Cargando…
Breast Cancer Pathological Image Classification Based on the Multiscale CNN Squeeze Model
The use of an automatic histopathological image identification system is essential for expediting diagnoses and lowering mistake rates. Although it is of enormous clinical importance, computerized breast cancer multiclassification using histological pictures has rarely been investigated. A deep lear...
Autores principales: | Alqahtani, Yahya, Mandawkar, Umakant, Sharma, Aditi, Hasan, Mohammad Najmus Saquib, Kulkarni, Mrunalini Harish, Sugumar, R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444358/ https://www.ncbi.nlm.nih.gov/pubmed/36072731 http://dx.doi.org/10.1155/2022/7075408 |
Ejemplares similares
-
Prognostic Diagnosis for Breast Cancer Patients Using Probabilistic Bayesian Classification
por: Junath, N., et al.
Publicado: (2022) -
IoT malware detection architecture using a novel channel boosted and squeezed CNN
por: Asam, Muhammad, et al.
Publicado: (2022) -
Two mode quantum systems; 1, invariant classification of squeezing transformations and squeezed states
por: Arvind, D K, et al.
Publicado: (1994) -
Efficient Breast Cancer Classification Network with Dual Squeeze and Excitation in Histopathological Images
por: Sarker, Md. Mostafa Kamal, et al.
Publicado: (2022) -
A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation
por: Zhang, Jinghua, et al.
Publicado: (2020)