Cargando…
Ridge Regression Method and Bayesian Estimators under Composite LINEX Loss Function to Estimate the Shape Parameter in Lomax Distribution
In this paper, the Ridge Regression method is employed to estimate the shape parameter of the Lomax distribution (LD). In addition to that, the approaches of both classical and Bayesian are considered with several loss functions as a squared error (SELF), Linear Exponential (LLF), and Composite Line...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444360/ https://www.ncbi.nlm.nih.gov/pubmed/36072714 http://dx.doi.org/10.1155/2022/1200611 |
Sumario: | In this paper, the Ridge Regression method is employed to estimate the shape parameter of the Lomax distribution (LD). In addition to that, the approaches of both classical and Bayesian are considered with several loss functions as a squared error (SELF), Linear Exponential (LLF), and Composite Linear Exponential (CLLF). As far as Bayesian estimators are concerned, informative and noninformative priors are used to estimate the shape parameter. To examine the performance of the Ridge Regression method, we compared it with classical estimators which included Maximum Likelihood, Ordinary Least Squares, Uniformly Minimum Variance Unbiased Estimator, and Median Method as well as Bayesian estimators. Monte Carlo simulation compares these estimators with respect to the Mean Square Error criteria (MSE's). The result of the simulation mentioned that the Ridge Regression method is promising and can be used in a real environment. where it revealed better performance the than Ordinary Least Squares method for estimating shape parameter. |
---|