Cargando…
Sparse Dictionary-Based Magnetic Resonance Superresolution Imaging with Joint Loss Function Learning
Magnetic resonance image has important application value in disease diagnosis. Due to the particularity of its imaging mechanism, the resolution of hardware imaging needs to be improved by increasing radiation intensity and radiation time. Excess radiation can cause the body to overheat and, in seve...
Autores principales: | Liu, Huanyu, Liu, Xiaodong, Wu, Jinyu, Li, Lu, Shao, Mingmei, Liu, Yanyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444480/ https://www.ncbi.nlm.nih.gov/pubmed/36072419 http://dx.doi.org/10.1155/2022/2206454 |
Ejemplares similares
-
PSR: Unified Framework of Parameter-Learning-Based MR Image Superresolution
por: Liu, Huanyu, et al.
Publicado: (2021) -
A Sparse Bayesian Approach for Forward-Looking Superresolution Radar Imaging
por: Zhang, Yin, et al.
Publicado: (2017) -
Cardiac Magnetic Resonance Images Superresolution via Multichannel Residual Attention Networks
por: Qiu, Defu, et al.
Publicado: (2021) -
Noise reduction of diffusion tensor images by sparse representation and dictionary learning
por: Kong, Youyong, et al.
Publicado: (2016) -
Super-resolution CT Image Reconstruction Based on Dictionary Learning and Sparse Representation
por: Jiang, Changhui, et al.
Publicado: (2018)