Cargando…

Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge

Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Roth, Holger R., Xu, Ziyue, Tor-Díez, Carlos, Sanchez Jacob, Ramon, Zember, Jonathan, Molto, Jose, Li, Wenqi, Xu, Sheng, Turkbey, Baris, Turkbey, Evrim, Yang, Dong, Harouni, Ahmed, Rieke, Nicola, Hu, Shishuai, Isensee, Fabian, Tang, Claire, Yu, Qinji, Sölter, Jan, Zheng, Tong, Liauchuk, Vitali, Zhou, Ziqi, Moltz, Jan Hendrik, Oliveira, Bruno, Xia, Yong, Maier-Hein, Klaus H., Li, Qikai, Husch, Andreas, Zhang, Luyang, Kovalev, Vassili, Kang, Li, Hering, Alessa, Vilaça, João L., Flores, Mona, Xu, Daguang, Wood, Bradford, Linguraru, Marius George
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444848/
https://www.ncbi.nlm.nih.gov/pubmed/36156419
http://dx.doi.org/10.1016/j.media.2022.102605
_version_ 1784783321514901504
author Roth, Holger R.
Xu, Ziyue
Tor-Díez, Carlos
Sanchez Jacob, Ramon
Zember, Jonathan
Molto, Jose
Li, Wenqi
Xu, Sheng
Turkbey, Baris
Turkbey, Evrim
Yang, Dong
Harouni, Ahmed
Rieke, Nicola
Hu, Shishuai
Isensee, Fabian
Tang, Claire
Yu, Qinji
Sölter, Jan
Zheng, Tong
Liauchuk, Vitali
Zhou, Ziqi
Moltz, Jan Hendrik
Oliveira, Bruno
Xia, Yong
Maier-Hein, Klaus H.
Li, Qikai
Husch, Andreas
Zhang, Luyang
Kovalev, Vassili
Kang, Li
Hering, Alessa
Vilaça, João L.
Flores, Mona
Xu, Daguang
Wood, Bradford
Linguraru, Marius George
author_facet Roth, Holger R.
Xu, Ziyue
Tor-Díez, Carlos
Sanchez Jacob, Ramon
Zember, Jonathan
Molto, Jose
Li, Wenqi
Xu, Sheng
Turkbey, Baris
Turkbey, Evrim
Yang, Dong
Harouni, Ahmed
Rieke, Nicola
Hu, Shishuai
Isensee, Fabian
Tang, Claire
Yu, Qinji
Sölter, Jan
Zheng, Tong
Liauchuk, Vitali
Zhou, Ziqi
Moltz, Jan Hendrik
Oliveira, Bruno
Xia, Yong
Maier-Hein, Klaus H.
Li, Qikai
Husch, Andreas
Zhang, Luyang
Kovalev, Vassili
Kang, Li
Hering, Alessa
Vilaça, João L.
Flores, Mona
Xu, Daguang
Wood, Bradford
Linguraru, Marius George
author_sort Roth, Holger R.
collection PubMed
description Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training ([Formula: see text] , source A), validation ([Formula: see text] , source A) and testing ([Formula: see text] , source A; [Formula: see text] , source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge — 2020.
format Online
Article
Text
id pubmed-9444848
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier B.V.
record_format MEDLINE/PubMed
spelling pubmed-94448482022-09-06 Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge Roth, Holger R. Xu, Ziyue Tor-Díez, Carlos Sanchez Jacob, Ramon Zember, Jonathan Molto, Jose Li, Wenqi Xu, Sheng Turkbey, Baris Turkbey, Evrim Yang, Dong Harouni, Ahmed Rieke, Nicola Hu, Shishuai Isensee, Fabian Tang, Claire Yu, Qinji Sölter, Jan Zheng, Tong Liauchuk, Vitali Zhou, Ziqi Moltz, Jan Hendrik Oliveira, Bruno Xia, Yong Maier-Hein, Klaus H. Li, Qikai Husch, Andreas Zhang, Luyang Kovalev, Vassili Kang, Li Hering, Alessa Vilaça, João L. Flores, Mona Xu, Daguang Wood, Bradford Linguraru, Marius George Med Image Anal Article Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training ([Formula: see text] , source A), validation ([Formula: see text] , source A) and testing ([Formula: see text] , source A; [Formula: see text] , source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge — 2020. Elsevier B.V. 2022-11 2022-09-06 /pmc/articles/PMC9444848/ /pubmed/36156419 http://dx.doi.org/10.1016/j.media.2022.102605 Text en © 2022 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Roth, Holger R.
Xu, Ziyue
Tor-Díez, Carlos
Sanchez Jacob, Ramon
Zember, Jonathan
Molto, Jose
Li, Wenqi
Xu, Sheng
Turkbey, Baris
Turkbey, Evrim
Yang, Dong
Harouni, Ahmed
Rieke, Nicola
Hu, Shishuai
Isensee, Fabian
Tang, Claire
Yu, Qinji
Sölter, Jan
Zheng, Tong
Liauchuk, Vitali
Zhou, Ziqi
Moltz, Jan Hendrik
Oliveira, Bruno
Xia, Yong
Maier-Hein, Klaus H.
Li, Qikai
Husch, Andreas
Zhang, Luyang
Kovalev, Vassili
Kang, Li
Hering, Alessa
Vilaça, João L.
Flores, Mona
Xu, Daguang
Wood, Bradford
Linguraru, Marius George
Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
title Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
title_full Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
title_fullStr Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
title_full_unstemmed Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
title_short Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
title_sort rapid artificial intelligence solutions in a pandemic—the covid-19-20 lung ct lesion segmentation challenge
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444848/
https://www.ncbi.nlm.nih.gov/pubmed/36156419
http://dx.doi.org/10.1016/j.media.2022.102605
work_keys_str_mv AT rothholgerr rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT xuziyue rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT tordiezcarlos rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT sanchezjacobramon rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT zemberjonathan rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT moltojose rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT liwenqi rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT xusheng rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT turkbeybaris rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT turkbeyevrim rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT yangdong rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT harouniahmed rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT riekenicola rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT hushishuai rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT isenseefabian rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT tangclaire rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT yuqinji rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT solterjan rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT zhengtong rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT liauchukvitali rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT zhouziqi rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT moltzjanhendrik rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT oliveirabruno rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT xiayong rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT maierheinklaush rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT liqikai rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT huschandreas rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT zhangluyang rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT kovalevvassili rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT kangli rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT heringalessa rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT vilacajoaol rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT floresmona rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT xudaguang rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT woodbradford rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge
AT lingurarumariusgeorge rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge