Cargando…
Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comp...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444848/ https://www.ncbi.nlm.nih.gov/pubmed/36156419 http://dx.doi.org/10.1016/j.media.2022.102605 |
_version_ | 1784783321514901504 |
---|---|
author | Roth, Holger R. Xu, Ziyue Tor-Díez, Carlos Sanchez Jacob, Ramon Zember, Jonathan Molto, Jose Li, Wenqi Xu, Sheng Turkbey, Baris Turkbey, Evrim Yang, Dong Harouni, Ahmed Rieke, Nicola Hu, Shishuai Isensee, Fabian Tang, Claire Yu, Qinji Sölter, Jan Zheng, Tong Liauchuk, Vitali Zhou, Ziqi Moltz, Jan Hendrik Oliveira, Bruno Xia, Yong Maier-Hein, Klaus H. Li, Qikai Husch, Andreas Zhang, Luyang Kovalev, Vassili Kang, Li Hering, Alessa Vilaça, João L. Flores, Mona Xu, Daguang Wood, Bradford Linguraru, Marius George |
author_facet | Roth, Holger R. Xu, Ziyue Tor-Díez, Carlos Sanchez Jacob, Ramon Zember, Jonathan Molto, Jose Li, Wenqi Xu, Sheng Turkbey, Baris Turkbey, Evrim Yang, Dong Harouni, Ahmed Rieke, Nicola Hu, Shishuai Isensee, Fabian Tang, Claire Yu, Qinji Sölter, Jan Zheng, Tong Liauchuk, Vitali Zhou, Ziqi Moltz, Jan Hendrik Oliveira, Bruno Xia, Yong Maier-Hein, Klaus H. Li, Qikai Husch, Andreas Zhang, Luyang Kovalev, Vassili Kang, Li Hering, Alessa Vilaça, João L. Flores, Mona Xu, Daguang Wood, Bradford Linguraru, Marius George |
author_sort | Roth, Holger R. |
collection | PubMed |
description | Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training ([Formula: see text] , source A), validation ([Formula: see text] , source A) and testing ([Formula: see text] , source A; [Formula: see text] , source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge — 2020. |
format | Online Article Text |
id | pubmed-9444848 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier B.V. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94448482022-09-06 Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge Roth, Holger R. Xu, Ziyue Tor-Díez, Carlos Sanchez Jacob, Ramon Zember, Jonathan Molto, Jose Li, Wenqi Xu, Sheng Turkbey, Baris Turkbey, Evrim Yang, Dong Harouni, Ahmed Rieke, Nicola Hu, Shishuai Isensee, Fabian Tang, Claire Yu, Qinji Sölter, Jan Zheng, Tong Liauchuk, Vitali Zhou, Ziqi Moltz, Jan Hendrik Oliveira, Bruno Xia, Yong Maier-Hein, Klaus H. Li, Qikai Husch, Andreas Zhang, Luyang Kovalev, Vassili Kang, Li Hering, Alessa Vilaça, João L. Flores, Mona Xu, Daguang Wood, Bradford Linguraru, Marius George Med Image Anal Article Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training ([Formula: see text] , source A), validation ([Formula: see text] , source A) and testing ([Formula: see text] , source A; [Formula: see text] , source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge — 2020. Elsevier B.V. 2022-11 2022-09-06 /pmc/articles/PMC9444848/ /pubmed/36156419 http://dx.doi.org/10.1016/j.media.2022.102605 Text en © 2022 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Roth, Holger R. Xu, Ziyue Tor-Díez, Carlos Sanchez Jacob, Ramon Zember, Jonathan Molto, Jose Li, Wenqi Xu, Sheng Turkbey, Baris Turkbey, Evrim Yang, Dong Harouni, Ahmed Rieke, Nicola Hu, Shishuai Isensee, Fabian Tang, Claire Yu, Qinji Sölter, Jan Zheng, Tong Liauchuk, Vitali Zhou, Ziqi Moltz, Jan Hendrik Oliveira, Bruno Xia, Yong Maier-Hein, Klaus H. Li, Qikai Husch, Andreas Zhang, Luyang Kovalev, Vassili Kang, Li Hering, Alessa Vilaça, João L. Flores, Mona Xu, Daguang Wood, Bradford Linguraru, Marius George Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title | Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_full | Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_fullStr | Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_full_unstemmed | Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_short | Rapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_sort | rapid artificial intelligence solutions in a pandemic—the covid-19-20 lung ct lesion segmentation challenge |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444848/ https://www.ncbi.nlm.nih.gov/pubmed/36156419 http://dx.doi.org/10.1016/j.media.2022.102605 |
work_keys_str_mv | AT rothholgerr rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT xuziyue rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT tordiezcarlos rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT sanchezjacobramon rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT zemberjonathan rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT moltojose rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT liwenqi rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT xusheng rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT turkbeybaris rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT turkbeyevrim rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT yangdong rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT harouniahmed rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT riekenicola rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT hushishuai rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT isenseefabian rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT tangclaire rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT yuqinji rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT solterjan rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT zhengtong rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT liauchukvitali rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT zhouziqi rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT moltzjanhendrik rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT oliveirabruno rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT xiayong rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT maierheinklaush rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT liqikai rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT huschandreas rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT zhangluyang rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT kovalevvassili rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT kangli rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT heringalessa rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT vilacajoaol rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT floresmona rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT xudaguang rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT woodbradford rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT lingurarumariusgeorge rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge |