Cargando…

Highly time-resolved 4D MR angiography using golden-angle radial sparse parallel (GRASP) MRI

Current dynamic MRA techniques are limited by temporal resolution and signal-to-noise penalties. GRASP, a fast and flexible MRI technique combining compressed-sensing, parallel imaging, and golden-angle radial sampling, acquires volumetric data continuously and can be reconstructed post hoc for user...

Descripción completa

Detalles Bibliográficos
Autores principales: Goldman-Yassen, Adam E., Raz, Eytan, Borja, Maria J., Chen, Duan, Derman, Anna, Dogra, Siddhant, Block, Kai Tobias, Dehkharghani, Seena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445093/
https://www.ncbi.nlm.nih.gov/pubmed/36064872
http://dx.doi.org/10.1038/s41598-022-18191-y
Descripción
Sumario:Current dynamic MRA techniques are limited by temporal resolution and signal-to-noise penalties. GRASP, a fast and flexible MRI technique combining compressed-sensing, parallel imaging, and golden-angle radial sampling, acquires volumetric data continuously and can be reconstructed post hoc for user-defined applications. We describe a custom pipeline to retrospectively reconstruct ultrahigh temporal resolution, dynamic MRA from GRASP imaging obtained in the course of routine practice. GRASP scans were reconstructed using a custom implementation of the GRASP algorithm and post-processed with MeVisLab (MeVis Medical Solutions AG, Germany). Twenty consecutive examinations were scored by three neuroradiologists for angiographic quality of specific vascular segments and imaging artifacts using a 4-point scale. Unsubtracted images, baseline-subtracted images, and a temporal gradient dataset were available in 2D and 3D reconstructions. Distinct arterial and capillary phases were identified in all reconstructions, with a median of 2 frames (IQR1-3 and 2–3, respectively). Median rating for vascular segments was 3 (excellent) in all reconstructions and for nearly all segments, with excellent intraclass correlation (range 0.91–1.00). No cases were degraded by artifacts. GRASP-MRI obtained in routine practice can be seamlessly repurposed to produce high quality 4D MRA with 1–2-s resolved isotropic cerebrovascular angiography. Further exploration into diagnostic accuracy in disease-specific applications is warranted.