Cargando…
Geometric deep learning reveals a structuro-temporal understanding of healthy and pathologic brain aging
BACKGROUND: Brain age has historically been investigated primarily at the whole brain level. The ability to deconstruct the brain into its composite parts and explore brain age at the sub-structure level offers unique advantages. These include the exploration of dynamic and interconnected relationsh...
Autores principales: | Besson, Pierre, Rogalski, Emily, Gill, Nathan P., Zhang, Hui, Martersteck, Adam, Bandt, S. Kathleen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445244/ https://www.ncbi.nlm.nih.gov/pubmed/36081894 http://dx.doi.org/10.3389/fnagi.2022.895535 |
Ejemplares similares
-
A multicohort geometric deep learning study of age dependent cortical and subcortical morphologic interactions for fluid intelligence prediction
por: Wu, Yunan, et al.
Publicado: (2022) -
Specific structuro-metabolic pattern of thalamic subnuclei in fatal familial insomnia: A PET/MRI imaging study
por: Xie, Kexin, et al.
Publicado: (2022) -
Proof of concept demonstration of optimal composite MRI endpoints for clinical trials
por: Edland, Steven D., et al.
Publicado: (2016) -
Focal amyloid and asymmetric tau in an imaging-to-autopsy case of clinical primary progressive aphasia with Alzheimer disease neuropathology
por: Martersteck, Adam, et al.
Publicado: (2022) -
Accumulation of neurofibrillary tangles and activated microglia is associated with lower neuron densities in the aphasic variant of Alzheimer’s disease
por: Ohm, Daniel T., et al.
Publicado: (2020)