Cargando…
On evaluating the efficiency of the delta-lognormal mean estimator and predictor
A variable taking positive values from a lognormal distribution and null values with a given probability is distributed according to the so-called delta-lognormal distribution. Two situations arise depending on whether the data are regarded as a random sample from an infinite population (superpopula...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445395/ https://www.ncbi.nlm.nih.gov/pubmed/36081488 http://dx.doi.org/10.1016/j.mex.2022.101830 |
_version_ | 1784783412607844352 |
---|---|
author | Aubry, Philippe |
author_facet | Aubry, Philippe |
author_sort | Aubry, Philippe |
collection | PubMed |
description | A variable taking positive values from a lognormal distribution and null values with a given probability is distributed according to the so-called delta-lognormal distribution. Two situations arise depending on whether the data are regarded as a random sample from an infinite population (superpopulation) or from a finite population, itself considered as a random sample from a superpopulation. In the case of an infinite population, estimating the mean can be accomplished using a uniformly minimum-variance unbiased estimator (UMVUE). Likewise, the prediction of the mean in the case of a finite population may be based on the UMVUE. In both cases, one expects a gain in precision when taking into account the shape of the distribution by relying on the UMVUE rather than on the sample mean, which is a nonparametric estimator (or predictor). 1. For the infinite population case, the relative efficiency results presented in this article are more complete and more accurate than those published so far. 2. The article fills a gap regarding the question of relative efficiency in the case of a finite population. 3. Calculations were performed using the exact expression for the variance of the UMVUE of the mean, expressed in terms of the confluent hypergeometric limit function. |
format | Online Article Text |
id | pubmed-9445395 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-94453952022-09-07 On evaluating the efficiency of the delta-lognormal mean estimator and predictor Aubry, Philippe MethodsX Method Article A variable taking positive values from a lognormal distribution and null values with a given probability is distributed according to the so-called delta-lognormal distribution. Two situations arise depending on whether the data are regarded as a random sample from an infinite population (superpopulation) or from a finite population, itself considered as a random sample from a superpopulation. In the case of an infinite population, estimating the mean can be accomplished using a uniformly minimum-variance unbiased estimator (UMVUE). Likewise, the prediction of the mean in the case of a finite population may be based on the UMVUE. In both cases, one expects a gain in precision when taking into account the shape of the distribution by relying on the UMVUE rather than on the sample mean, which is a nonparametric estimator (or predictor). 1. For the infinite population case, the relative efficiency results presented in this article are more complete and more accurate than those published so far. 2. The article fills a gap regarding the question of relative efficiency in the case of a finite population. 3. Calculations were performed using the exact expression for the variance of the UMVUE of the mean, expressed in terms of the confluent hypergeometric limit function. Elsevier 2022-08-23 /pmc/articles/PMC9445395/ /pubmed/36081488 http://dx.doi.org/10.1016/j.mex.2022.101830 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Method Article Aubry, Philippe On evaluating the efficiency of the delta-lognormal mean estimator and predictor |
title | On evaluating the efficiency of the delta-lognormal mean estimator and predictor |
title_full | On evaluating the efficiency of the delta-lognormal mean estimator and predictor |
title_fullStr | On evaluating the efficiency of the delta-lognormal mean estimator and predictor |
title_full_unstemmed | On evaluating the efficiency of the delta-lognormal mean estimator and predictor |
title_short | On evaluating the efficiency of the delta-lognormal mean estimator and predictor |
title_sort | on evaluating the efficiency of the delta-lognormal mean estimator and predictor |
topic | Method Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445395/ https://www.ncbi.nlm.nih.gov/pubmed/36081488 http://dx.doi.org/10.1016/j.mex.2022.101830 |
work_keys_str_mv | AT aubryphilippe onevaluatingtheefficiencyofthedeltalognormalmeanestimatorandpredictor |