Cargando…
Automated Lung Segmentation from Computed Tomography Images of Normal and COVID-19 Pneumonia Patients
BACKGROUND: Automated image segmentation is an essential step in quantitative image analysis. This study assesses the performance of a deep learning-based model for lung segmentation from computed tomography (CT) images of normal and COVID-19 patients. METHODS: A descriptive-analytical study was con...
Autores principales: | Gholamiankhah, Faeze, Mostafapour, Samaneh, Abdi Goushbolagh, Nouraddin, Shojaerazavi, Seyedjafar, Layegh, Parvaneh, Tabatabaei, Seyyed Mohammad, Arabi, Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shiraz University of Medical Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445870/ https://www.ncbi.nlm.nih.gov/pubmed/36117575 http://dx.doi.org/10.30476/IJMS.2022.90791.2178 |
Ejemplares similares
-
Quantitative Analysis of Image Quality in Low-Dose Computed Tomography Imaging for COVID-19 Patients
por: Ghane, Behrooz, et al.
Publicado: (2023) -
A comparison of skin dose estimation between thermoluminescent dosimeter and treatment planning system in prostatic cancer: A brachytherapy technique
por: Majdaeen, Mehrsa, et al.
Publicado: (2021) -
Evaluation of Dose Rate and Photon Energy Dependence of Gafchromic EBT3 Film Irradiating with 6 MV and Co-60 Photon Beams
por: Ataei, Gholamreza, et al.
Publicado: (2019) -
COLI‐Net: Deep learning‐assisted fully automated COVID‐19 lung and infection pneumonia lesion detection and segmentation from chest computed tomography images
por: Shiri, Isaac, et al.
Publicado: (2021) -
Automated Segmentation and Connectivity Analysis for Normal Pressure Hydrocephalus
por: Zhang, Angela, et al.
Publicado: (2022)