Cargando…

Identification and analysis of necroptosis-associated signatures for prognostic and immune microenvironment evaluation in hepatocellular carcinoma

BACKGROUND: Hepatocellular carcinoma remains the third most common cause of cancer-related deaths worldwide. Although great achievements have been made in resection, chemical therapies and immunotherapies, the pathogenesis and mechanism of HCC initiation and progression still need further exploratio...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Juan, Yu, Chengbo, Bao, Qiongling, Zhang, Xiaoqian, Wang, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445885/
https://www.ncbi.nlm.nih.gov/pubmed/36081504
http://dx.doi.org/10.3389/fimmu.2022.973649
_version_ 1784783521109245952
author Lu, Juan
Yu, Chengbo
Bao, Qiongling
Zhang, Xiaoqian
Wang, Jie
author_facet Lu, Juan
Yu, Chengbo
Bao, Qiongling
Zhang, Xiaoqian
Wang, Jie
author_sort Lu, Juan
collection PubMed
description BACKGROUND: Hepatocellular carcinoma remains the third most common cause of cancer-related deaths worldwide. Although great achievements have been made in resection, chemical therapies and immunotherapies, the pathogenesis and mechanism of HCC initiation and progression still need further exploration. Necroptosis genes have been reported to play an important role in HCC malignant activities, thus it is of great importance to comprehensively explore necroptosis-associated genes in HCC. METHODS: We chose the LIHC cohort from the TCGA, ICGC and GEO databases for this study. ConsensusClusterPlus was adopted to identify the necroptosis genes-based clusters, and LASSO cox regression was applied to construct the prognostic model based on necroptosis signatures. The GSEA and CIBERSORT algorithms were applied to evaluate the immune cell infiltration level. QPCR was also applied in this study to evaluate the expression level of genes in HCC. RESULTS: We identified three clusters, C1, C2 and C3. Compared with C2 and C3, the C1 cluster had the shortest overall survival time and highest immune score. The C1 was samples were significantly enriched in cell cycle pathways, some tumor epithelial-mesenchymal transition related signaling pathways, among others. The DEGs between the 3 clusters showed that C1 was enriched in cell cycle, DNA replication, cellular senescence, and p53 signaling pathways. The LASSO cox regression identified KPNA2, SLC1A5 and RAMP3 as prognostic model hub genes. The high risk-score subgroup had an elevated expression level of immune checkpoint genes and a higher TIDE score, which suggested that the high risk-score subgroup had a lower efficiency of immunotherapies. We also validated that the necroptosis signatures-based risk-score model had powerful prognosis prediction ability. CONCLUSION: Based on necroptosis-related genes, we classified patients into 3 clusters, among which C1 had significantly shorter overall survival times. The proposed necroptosis signatures-based prognosis prediction model provides a novel approach in HCC survival prediction and clinical evaluation.
format Online
Article
Text
id pubmed-9445885
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-94458852022-09-07 Identification and analysis of necroptosis-associated signatures for prognostic and immune microenvironment evaluation in hepatocellular carcinoma Lu, Juan Yu, Chengbo Bao, Qiongling Zhang, Xiaoqian Wang, Jie Front Immunol Immunology BACKGROUND: Hepatocellular carcinoma remains the third most common cause of cancer-related deaths worldwide. Although great achievements have been made in resection, chemical therapies and immunotherapies, the pathogenesis and mechanism of HCC initiation and progression still need further exploration. Necroptosis genes have been reported to play an important role in HCC malignant activities, thus it is of great importance to comprehensively explore necroptosis-associated genes in HCC. METHODS: We chose the LIHC cohort from the TCGA, ICGC and GEO databases for this study. ConsensusClusterPlus was adopted to identify the necroptosis genes-based clusters, and LASSO cox regression was applied to construct the prognostic model based on necroptosis signatures. The GSEA and CIBERSORT algorithms were applied to evaluate the immune cell infiltration level. QPCR was also applied in this study to evaluate the expression level of genes in HCC. RESULTS: We identified three clusters, C1, C2 and C3. Compared with C2 and C3, the C1 cluster had the shortest overall survival time and highest immune score. The C1 was samples were significantly enriched in cell cycle pathways, some tumor epithelial-mesenchymal transition related signaling pathways, among others. The DEGs between the 3 clusters showed that C1 was enriched in cell cycle, DNA replication, cellular senescence, and p53 signaling pathways. The LASSO cox regression identified KPNA2, SLC1A5 and RAMP3 as prognostic model hub genes. The high risk-score subgroup had an elevated expression level of immune checkpoint genes and a higher TIDE score, which suggested that the high risk-score subgroup had a lower efficiency of immunotherapies. We also validated that the necroptosis signatures-based risk-score model had powerful prognosis prediction ability. CONCLUSION: Based on necroptosis-related genes, we classified patients into 3 clusters, among which C1 had significantly shorter overall survival times. The proposed necroptosis signatures-based prognosis prediction model provides a novel approach in HCC survival prediction and clinical evaluation. Frontiers Media S.A. 2022-08-23 /pmc/articles/PMC9445885/ /pubmed/36081504 http://dx.doi.org/10.3389/fimmu.2022.973649 Text en Copyright © 2022 Lu, Yu, Bao, Zhang and Wang https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Lu, Juan
Yu, Chengbo
Bao, Qiongling
Zhang, Xiaoqian
Wang, Jie
Identification and analysis of necroptosis-associated signatures for prognostic and immune microenvironment evaluation in hepatocellular carcinoma
title Identification and analysis of necroptosis-associated signatures for prognostic and immune microenvironment evaluation in hepatocellular carcinoma
title_full Identification and analysis of necroptosis-associated signatures for prognostic and immune microenvironment evaluation in hepatocellular carcinoma
title_fullStr Identification and analysis of necroptosis-associated signatures for prognostic and immune microenvironment evaluation in hepatocellular carcinoma
title_full_unstemmed Identification and analysis of necroptosis-associated signatures for prognostic and immune microenvironment evaluation in hepatocellular carcinoma
title_short Identification and analysis of necroptosis-associated signatures for prognostic and immune microenvironment evaluation in hepatocellular carcinoma
title_sort identification and analysis of necroptosis-associated signatures for prognostic and immune microenvironment evaluation in hepatocellular carcinoma
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445885/
https://www.ncbi.nlm.nih.gov/pubmed/36081504
http://dx.doi.org/10.3389/fimmu.2022.973649
work_keys_str_mv AT lujuan identificationandanalysisofnecroptosisassociatedsignaturesforprognosticandimmunemicroenvironmentevaluationinhepatocellularcarcinoma
AT yuchengbo identificationandanalysisofnecroptosisassociatedsignaturesforprognosticandimmunemicroenvironmentevaluationinhepatocellularcarcinoma
AT baoqiongling identificationandanalysisofnecroptosisassociatedsignaturesforprognosticandimmunemicroenvironmentevaluationinhepatocellularcarcinoma
AT zhangxiaoqian identificationandanalysisofnecroptosisassociatedsignaturesforprognosticandimmunemicroenvironmentevaluationinhepatocellularcarcinoma
AT wangjie identificationandanalysisofnecroptosisassociatedsignaturesforprognosticandimmunemicroenvironmentevaluationinhepatocellularcarcinoma