Cargando…

Effects of nitric oxide in mucociliary transport

The airways are made up of ciliated epithelium which secretes mucous, protecting the respiratory tract from particles inhaled during breathing. Its is paramount to understand the physiology and the mechanisms involved in mucociliary activity. Literature suggests that Nitric oxide (NO), especially th...

Descripción completa

Detalles Bibliográficos
Autores principales: Abra Blanco, Eleonora Elisia, Martins Pinge, Marli Cardoso, Andrade Neto, Otavio André, Gardin Pessoa, Nathália
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446053/
https://www.ncbi.nlm.nih.gov/pubmed/20209289
http://dx.doi.org/10.1016/S1808-8694(15)30551-6
Descripción
Sumario:The airways are made up of ciliated epithelium which secretes mucous, protecting the respiratory tract from particles inhaled during breathing. Its is paramount to understand the physiology and the mechanisms involved in mucociliary activity. Literature suggests that Nitric oxide (NO), especially the one produced by iNOS expression, maintains the mucociliary function and the immune defense of the nasal cavity. AIM: to assess NO participation and the enzymatic pathways in the production of NO and mucociliary transport, using constructive and inductive NO synthetase inhibitors, L-NAME and aminoguanidine, respectively. MATERIALS AND METHODS: frog palates were prepared and immerse in ringer (control), L-NAME or aminoguanidine solutions. The palates were immerse in these solutions for four periods of 15 minutes. Mucociliary transport measures were carried out before and after each exposure. RESULTS: control palates maintained stable their transportation speed. L-NAME increased, while aminoguanidine reduced mucous transportation velocity. CONCLUSION: unspecific cNOS block with L-NAME and relatively specific iNOS block with aminoguanidine results leads us to propose that depending on the pathway, the NO can increase or reduce mucociliary transport in frog palates.