Cargando…
Combining backpropagation with Equilibrium Propagation to improve an Actor-Critic reinforcement learning framework
Backpropagation (BP) has been used to train neural networks for many years, allowing them to solve a wide variety of tasks like image classification, speech recognition, and reinforcement learning tasks. But the biological plausibility of BP as a mechanism of neural learning has been questioned. Equ...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446087/ https://www.ncbi.nlm.nih.gov/pubmed/36082305 http://dx.doi.org/10.3389/fncom.2022.980613 |
Sumario: | Backpropagation (BP) has been used to train neural networks for many years, allowing them to solve a wide variety of tasks like image classification, speech recognition, and reinforcement learning tasks. But the biological plausibility of BP as a mechanism of neural learning has been questioned. Equilibrium Propagation (EP) has been proposed as a more biologically plausible alternative and achieves comparable accuracy on the CIFAR-10 image classification task. This study proposes the first EP-based reinforcement learning architecture: an Actor-Critic architecture with the actor network trained by EP. We show that this model can solve the basic control tasks often used as benchmarks for BP-based models. Interestingly, our trained model demonstrates more consistent high-reward behavior than a comparable model trained exclusively by BP. |
---|