Cargando…

Inhibition of monocarboxylate transporters (MCT) 1 and 4 reduces exercise capacity in mice

The concept of lactate shuttle is widely accepted in exercise physiology. Lactate transport is mediated by monocarboxylate transporters (MCT), which enable cells to take up and release lactate. However, the role of lactate during exercise has not yet been fully elucidated. In this study, we investig...

Descripción completa

Detalles Bibliográficos
Autores principales: Kitaoka, Yu, Takahashi, Kenya, Hatta, Hideo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446403/
https://www.ncbi.nlm.nih.gov/pubmed/36065874
http://dx.doi.org/10.14814/phy2.15457
Descripción
Sumario:The concept of lactate shuttle is widely accepted in exercise physiology. Lactate transport is mediated by monocarboxylate transporters (MCT), which enable cells to take up and release lactate. However, the role of lactate during exercise has not yet been fully elucidated. In this study, we investigated the effects of lactate transport inhibition on exercise capacity and metabolism in mice. Here, we demonstrated that MCT1 inhibition by α‐cyano‐4‐hydroxycinnamate administration (4‐CIN, 200 mg/g of body weight) reduced the treadmill running duration at 20 m/min. The administration of 4‐CIN increased the blood lactate concentration immediately after exercise. With matched exercise duration, the muscle lactate concentration was higher while muscle glycogen content was lower in 4‐CIN‐administered mice. Further, we showed that MCT4 inhibition by bindarit administration (50 mg/kg of body weight) reduced the treadmill running duration at 40 m/min. Bindarit administration increased the muscle lactate but did not alter the blood lactate and glucose concentrations, as well as muscle glycogen content, immediately after exercise. A negative correlation was observed between exercise duration at 40 m/min and muscle lactate concentration immediately after exercise. Our results suggest that lactate transport via MCT1 and MCT4 plays a pivotal role in sustaining exercise.