Cargando…

Cigarette smoke exposed airway epithelial cell-derived EVs promote pro-inflammatory macrophage activation in alpha-1 antitrypsin deficiency

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder most commonly secondary to a single mutation in the SERPINA1 gene (PI*Z) that causes misfolding and accumulation of alpha-1 antitrypsin (AAT) in hepatocytes and mononuclear phagocytes which reduces plasma AAT and creates a toxic...

Descripción completa

Detalles Bibliográficos
Autores principales: Khodayari, Nazli, Oshins, Regina, Mehrad, Borna, Lascano, Jorge E., Qiang, Xiao, West, Jesse R., Holliday, L. Shannon, Lee, Jungnam, Wiesemann, Gayle, Eydgahi, Soroush, Brantly, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446525/
https://www.ncbi.nlm.nih.gov/pubmed/36068572
http://dx.doi.org/10.1186/s12931-022-02161-z
Descripción
Sumario:BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder most commonly secondary to a single mutation in the SERPINA1 gene (PI*Z) that causes misfolding and accumulation of alpha-1 antitrypsin (AAT) in hepatocytes and mononuclear phagocytes which reduces plasma AAT and creates a toxic gain of function. This toxic gain of function promotes a pro-inflammatory phenotype in macrophages that contributes to lung inflammation and early-onset COPD, especially in individuals who smoke cigarettes. The aim of this study is to determine the role of cigarette exposed AATD macrophages and bronchial epithelial cells in AATD-mediated lung inflammation. METHODS: Peripheral blood mononuclear cells from AATD and healthy individuals were differentiated into alveolar-like macrophages and exposed to air or cigarette smoke while in culture. Macrophage endoplasmic reticulum stress was quantified and secreted cytokines were measured using qPCR and cytokine ELISAs. To determine whether there is “cross talk” between epithelial cells and macrophages, macrophages were exposed to extracellular vesicles released by airway epithelial cells exposed to cigarette smoke and their inflammatory response was determined. RESULTS: AATD macrophages spontaneously produce several-fold more pro-inflammatory cytokines as compared to normal macrophages. AATD macrophages have an enhanced inflammatory response when exposed to cigarette smoke-induced extracellular vesicles (EVs) released from airway epithelial cells. Cigarette smoke-induced EVs induce expression of GM-CSF and IL-8 in AATD macrophages but have no effect on normal macrophages. Release of AAT polymers, potent neutrophil chemo attractants, were also increased from AATD macrophages after exposure to cigarette smoke-induced EVs. CONCLUSIONS: The expression of mutated AAT confers an inflammatory phenotype in AATD macrophages which disposes them to an exaggerated inflammatory response to cigarette smoke-induced EVs, and thus could contribute to progressive lung inflammation and damage in AATD individuals. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12931-022-02161-z.