Cargando…
Advances in Machine Learning and Hyperspectral Imaging in the Food Supply Chain
Food quality and safety are the essential hot issues of social concern. In recent years, there has been a growing demand for real-time food information, and non-destructive testing is gradually replacing traditional manual sensory testing and chemical analysis methods with lagging and destructive ef...
Autores principales: | Kang, Zhilong, Zhao, Yuchen, Chen, Lei, Guo, Yanju, Mu, Qingshuang, Wang, Shenyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446636/ http://dx.doi.org/10.1007/s12393-022-09322-2 |
Ejemplares similares
-
Applying federated learning to combat food fraud in food supply chains
por: Gavai, Anand, et al.
Publicado: (2023) -
Identification of Weeds Based on Hyperspectral Imaging and Machine Learning
por: Li, Yanjie, et al.
Publicado: (2021) -
Hyperspectral Imaging (HSI) for meat quality evaluation across the supply chain: Current and future trends
por: Jia, Wenyang, et al.
Publicado: (2022) -
Application of Visible/Infrared Spectroscopy and Hyperspectral Imaging With Machine Learning Techniques for Identifying Food Varieties and Geographical Origins
por: Feng, Lei, et al.
Publicado: (2021) -
Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review
por: Saha, Dhritiman, et al.
Publicado: (2021)