Cargando…
A deep learning-based self-adapting ensemble method for segmentation in gynecological brachytherapy
PURPOSE: Fast and accurate outlining of the organs at risk (OARs) and high-risk clinical tumor volume (HRCTV) is especially important in high-dose-rate brachytherapy due to the highly time-intensive online treatment planning process and the high dose gradient around the HRCTV. This study aims to app...
Autores principales: | Li, Zhen, Zhu, Qingyuan, Zhang, Lihua, Yang, Xiaojing, Li, Zhaobin, Fu, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446699/ https://www.ncbi.nlm.nih.gov/pubmed/36064571 http://dx.doi.org/10.1186/s13014-022-02121-3 |
Ejemplares similares
-
A personalized DVH prediction model for HDR brachytherapy in cervical cancer treatment
por: Li, Zhen, et al.
Publicado: (2022) -
Applications of machine learning in tumor-associated macrophages
por: Li, Zhen, et al.
Publicado: (2022) -
Deep learning applications in automatic segmentation and reconstruction in CT-based cervix brachytherapy
por: Hu, Hai, et al.
Publicado: (2021) -
Deep learning-based two-step organs at risk auto-segmentation model for brachytherapy planning in parotid gland carcinoma
por: Li, Zhen-Yu, et al.
Publicado: (2022) -
Automated cervical cell segmentation using deep ensemble learning
por: Ji, Jie, et al.
Publicado: (2023)