Cargando…

The correlation of pericoronary adipose tissue with coronary artery disease and left ventricular function

OBJECTIVE: We sought to investigate the correlation of pericoronary adipose tissue with coronary artery disease and left ventricular (LV) function. METHODS: Participants with clinically suspected coronary artery disease were enrolled. All participants underwent coronary computed tomography angiograp...

Descripción completa

Detalles Bibliográficos
Autores principales: You, Deshu, Yu, Haiyang, Wang, Zhiwei, Wei, Xiaoyu, Wu, Xiangxiang, Pan, Changjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446702/
https://www.ncbi.nlm.nih.gov/pubmed/36068548
http://dx.doi.org/10.1186/s12872-022-02843-y
Descripción
Sumario:OBJECTIVE: We sought to investigate the correlation of pericoronary adipose tissue with coronary artery disease and left ventricular (LV) function. METHODS: Participants with clinically suspected coronary artery disease were enrolled. All participants underwent coronary computed tomography angiography (CCTA) and echocardiography followed by invasive coronary angiography (ICA) within 6 months. Pericoronary adipose tissue (PCAT) was extracted to analyze the correlation with the Gensini score and LV function parameters, including IVS, LVPW, LVEDD, LVESD, LVEDV, LVESV, FS, LVEF, LVM, and LVMI. The correlation between PCAT and the Gensini score was assessed using Spearman’s correlation analysis, and that between the PCAT volume or FAI and LV function parameters was determined using partial correlation analysis. RESULTS: One hundred and fifty-nine participants (mean age, 64.55 ± 10.64 years; men, 65.4% [104/159]) were included in the final analysis. Risk factors for coronary artery disease, such as hypertension, diabetes, dyslipidemia, and a history of smoking or drinking, had no significant association with PCAT (P > 0.05), and there was also no correlation between PCAT and the Gensini score. However, the LAD-FAI was positively correlated with the IVS (r = 0.203, P = 0.013), LVPW (r = 0.218, P = 0.008), LVEDD (r = 0.317, P < 0.001), LVESD (r = 0.298, P < 0.001), LVEDV (r = 0.317, P < 0.001), LVESV (r = 0.301, P < 0.001), LVM (r = 0.371, P < 0.001), and LVMI (r = 0.304, P < 0.001). Also, the LCX-FAI was positively correlated with the LVEDD (r = 0.199, P = 0.015), LVESD (r = 0.190, P = 0.021), LVEDV (r = 0.203, P = 0.013), LVESV (r = 0.197, P = 0.016), LVM (r = 0.220, P = 0.007), and LVMI (r = 0.172, P = 0.036), and the RCA-FAI was positively correlated with the LVEDD (r = 0.258, P = 0.002), LVESD (r = 0.238, P = 0.004), LVEDV (r = 0.266, P = 0.001), LVESV (r = 0.249, P = 0.002), LVM (r = 0.237, P = 0.004), and LVMI (r = 0.218, P = 0.008), respectively. Finally, the total volume was positively correlated with FS (r = 0.167, P = 0.042). CONCLUSION: The FAI was positively correlated with the LV function but was not associated with the severity of coronary artery disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12872-022-02843-y.