Cargando…
Optimal Modeling of Anti-Breast Cancer Candidate Drugs Based on Graph Model Feature Selection
Breast cancer is one of the most widespread and fatal cancers in women. At present, anticancer drug-inhibiting estrogen receptor α subtype (ERα) can greatly improve the cure rate for breast cancer patients, so the research and development of this kind of drugs are very urgent. In this paper, the pro...
Autores principales: | Chen, Rongyuan, He, Zhixiong, Huang, Shaonian, Shen, Lizhi, Zhou, Xiancheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448531/ https://www.ncbi.nlm.nih.gov/pubmed/36081436 http://dx.doi.org/10.1155/2022/8418048 |
Ejemplares similares
-
Topology-enhanced molecular graph representation for anti-breast cancer drug selection
por: Gao, Yue, et al.
Publicado: (2022) -
Application of multi-objective optimization in the study of anti-breast cancer candidate drugs
por: Mei, Yuan, et al.
Publicado: (2022) -
Optimization of mine ventilation network feature graph
por: Jia, Jinzhang, et al.
Publicado: (2020) -
Drug response prediction using graph representation learning and Laplacian feature selection
por: Xie, Minzhu, et al.
Publicado: (2022) -
Efficient Calibration of Groundwater Contaminant Transport Models Using Bayesian Optimization
por: Deng, Hao, et al.
Publicado: (2023)