Cargando…

Endophytic Fungi and Secondary Metabolites of Rehmannia Glutinosa Based on Traditional Chinese Medicine Fingerprints

Research on the active components of medicinal plants has always been the focus of research, and research on the active components of medicinal plant endophytic fungi and their secondary metabolites has also attracted widespread attention. Endophytic fungi of medicinal plants are widely distributed...

Descripción completa

Detalles Bibliográficos
Autor principal: Geng, Xiaotong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448613/
https://www.ncbi.nlm.nih.gov/pubmed/36110979
http://dx.doi.org/10.1155/2022/7701198
Descripción
Sumario:Research on the active components of medicinal plants has always been the focus of research, and research on the active components of medicinal plant endophytic fungi and their secondary metabolites has also attracted widespread attention. Endophytic fungi of medicinal plants are widely distributed and are ubiquitous in various biological groups in nature. Rehmannia glutinosa contains a variety of active ingredients, which are regarded as the top grade of Chinese medicinal materials. It is of certain significance to study endophytic fungi and their metabolites of Rehmannia glutinosa. In this paper, endophytic fungi and their secondary metabolites of Rehmannia glutinosa were studied using fingerprint technology, which initially understands the diversity of endophytic fungi in Rehmannia glutinosa. In this paper, the roots and leaves of Rehmannia glutinosa were used as experimental materials. The fungi were cultured in the medium, the fungi were isolated and purified by the tissue block method, the fungal growth of Rehmannia glutinosa in different parts was determined, and the types of endophytic fungi were identified by microscopic identification and fingerprinting. The isolated strains were tested for biological activity using oryza oryzae spores, and highly active strains were screened. Fermentation products of endophytic fungi were separated and purified by chromatography, and the structure of the compounds was identified by nuclear magnetic resonance spectroscopy. Through the above studies, the population structure of endophytic fungi of Rehmannia glutinosa was determined, 3 highly active strains were found, and the structures of 7 endophytic fungi metabolites were identified, of which 3 were newly discovered compounds.