Cargando…
Developing a robust model to predict depth of anesthesia from single channel EEG signal
Monitoring depth of anaesthesia (DoA) from electroencephalograph (EEG) signals is an ongoing challenge for anaesthesiologists. In this study, we propose an intelligence model that predicts the DoA from a single channel electroencephalograph (EEG) signal. A segmentation technique based on a sliding w...
Autores principales: | Alsafy, Iman, Diykh, Mohammed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448694/ https://www.ncbi.nlm.nih.gov/pubmed/35790625 http://dx.doi.org/10.1007/s13246-022-01145-z |
Ejemplares similares
-
Accuracy of Combined EEG Parameters in Prediction the Depth of Anesthesia
por: Arefian, Nourmohammad, et al.
Publicado: (2012) -
Assessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal
por: Sanjari, Neda, et al.
Publicado: (2021) -
Selection of the Best Electroencephalogram Channel to Predict the Depth of Anesthesia
por: Dubost, Clement, et al.
Publicado: (2019) -
Time-Frequency Analysis of EEG Signals and GLCM Features for Depth of Anesthesia Monitoring
por: Mousavi, Seyed Mortaza, et al.
Publicado: (2021) -
Classification of epileptic EEG signals based on simple random sampling and sequential feature selection
por: Ghayab, Hadi Ratham Al, et al.
Publicado: (2016)