Cargando…
Stochastic SIR model predicts the evolution of COVID-19 epidemics from public health and wastewater data in small and medium-sized municipalities: A one year study
The level of unpredictability of the COVID-19 pandemics poses a challenge to effectively model its dynamic evolution. In this study we incorporate the inherent stochasticity of the SARS-CoV-2 virus spread by reinterpreting the classical compartmental models of infectious diseases (SIR type) as chemi...
Autores principales: | Pájaro, Manuel, Fajar, Noelia M., Alonso, Antonio A., Otero-Muras, Irene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448700/ https://www.ncbi.nlm.nih.gov/pubmed/36091637 http://dx.doi.org/10.1016/j.chaos.2022.112671 |
Ejemplares similares
-
SELANSI: a toolbox for simulation of stochastic gene regulatory networks
por: Pájaro, Manuel, et al.
Publicado: (2018) -
Transient hysteresis and inherent stochasticity in gene regulatory networks
por: Pájaro, M., et al.
Publicado: (2019) -
IDESS: a toolbox for identification and automated design of stochastic gene circuits
por: Sequeiros, Carlos, et al.
Publicado: (2023) -
Wastewater and marine bioindicators surveillance to anticipate COVID-19 prevalence and to explore SARS-CoV-2 diversity by next generation sequencing: One-year study
por: Novoa, Beatriz, et al.
Publicado: (2022) -
Stochastic SIR epidemics in a population with households and schools
por: Ouboter, Tanneke, et al.
Publicado: (2015)