Cargando…
HCCANet: histopathological image grading of colorectal cancer using CNN based on multichannel fusion attention mechanism
Histopathological image analysis is the gold standard for pathologists to grade colorectal cancers of different differentiation types. However, the diagnosis by pathologists is highly subjective and prone to misdiagnosis. In this study, we constructed a new attention mechanism named MCCBAM based on...
Autores principales: | Zhou, Panyun, Cao, Yanzhen, Li, Min, Ma, Yuhua, Chen, Chen, Gan, Xiaojing, Wu, Jianying, Lv, Xiaoyi, Chen, Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448811/ https://www.ncbi.nlm.nih.gov/pubmed/36068309 http://dx.doi.org/10.1038/s41598-022-18879-1 |
Ejemplares similares
-
Multichannel CNN Model for Biomedical Entity Reorganization
por: Singh, Ajay Kumar, et al.
Publicado: (2022) -
Histopathological Tissue Segmentation of Lung Cancer with Bilinear CNN and Soft Attention
por: Xu, Rui, et al.
Publicado: (2022) -
A Novel Deep Learning Method for Intelligent Fault Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion
por: Gong, Wenfeng, et al.
Publicado: (2019) -
Detection and Classification of Histopathological Breast Images Using a Fusion of CNN Frameworks
por: Rafiq, Ahsan, et al.
Publicado: (2023) -
MCFN: A Multichannel Fusion Network for Sleep Apnea Syndrome Detection
por: Lv, Xingfeng, et al.
Publicado: (2023)