Cargando…
Linear leaky-integrate-and-fire neuron model based spiking neural networks and its mapping relationship to deep neural networks
Spiking neural networks (SNNs) are brain-inspired machine learning algorithms with merits such as biological plausibility and unsupervised learning capability. Previous works have shown that converting Artificial Neural Networks (ANNs) into SNNs is a practical and efficient approach for implementing...
Autores principales: | Lu, Sijia, Xu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448910/ https://www.ncbi.nlm.nih.gov/pubmed/36090262 http://dx.doi.org/10.3389/fnins.2022.857513 |
Ejemplares similares
-
Sharing leaky-integrate-and-fire neurons for memory-efficient spiking neural networks
por: Kim, Youngeun, et al.
Publicado: (2023) -
Highly efficient neuromorphic learning system of spiking neural network with multi-compartment leaky integrate-and-fire neurons
por: Gao, Tian, et al.
Publicado: (2022) -
An ultra-compact leaky-integrate-and-fire model for building spiking neural networks
por: Rozenberg, M. J., et al.
Publicado: (2019) -
Reconstructing Stimuli from the Spike Times of Leaky Integrate and Fire Neurons
por: Gerwinn, Sebastian, et al.
Publicado: (2011) -
Support vector machines for spike pattern classification with a leaky integrate-and-fire neuron
por: Ambard, Maxime, et al.
Publicado: (2012)