Cargando…
An artificial intelligence-based noninvasive solution to estimate pulmonary artery pressure
AIMS: Design to develop an artificial intelligence (AI) algorithm to accurately predict the pulmonary artery pressure (PAP) waveform using non-invasive signal inputs. METHODS AND RESULTS: We randomly sampled training, validation, and testing datasets from a waveform database containing 180 patients...
Autores principales: | Zheng, Jianwei, Abudayyeh, Islam, Mladenov, Georgi, Struppa, Daniele, Fu, Guohua, Chu, Huimin, Rakovski, Cyril |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448961/ https://www.ncbi.nlm.nih.gov/pubmed/36093166 http://dx.doi.org/10.3389/fcvm.2022.855356 |
Ejemplares similares
-
A High Precision Machine Learning-Enabled System for Predicting Idiopathic Ventricular Arrhythmia Origins
por: Zheng, Jianwei, et al.
Publicado: (2022) -
Optimal Multi-Stage Arrhythmia Classification Approach
por: Zheng, Jianwei, et al.
Publicado: (2020) -
A 12-Lead ECG database to identify origins of idiopathic ventricular arrhythmia containing 334 patients
por: Zheng, Jianwei, et al.
Publicado: (2020) -
Routine Echocardiography and Artificial Intelligence Solutions
por: Schuuring, Mark J., et al.
Publicado: (2021) -
A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia
por: Zheng, Jianwei, et al.
Publicado: (2021)