Cargando…
Geometric complement heterogeneous information and random forest for predicting lncRNA-disease associations
More and more evidences have showed that the unnatural expression of long non-coding RNA (lncRNA) is relevant to varieties of human diseases. Therefore, accurate identification of disease-related lncRNAs can help to understand lncRNA expression at the molecular level and to explore more effective tr...
Autores principales: | Yao, Dengju, Zhang, Tao, Zhan, Xiaojuan, Zhang, Shuli, Zhan, Xiaorong, Zhang, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448985/ https://www.ncbi.nlm.nih.gov/pubmed/36092871 http://dx.doi.org/10.3389/fgene.2022.995532 |
Ejemplares similares
-
A random forest based computational model for predicting novel lncRNA-disease associations
por: Yao, Dengju, et al.
Publicado: (2020) -
A clustering-based sampling method for miRNA-disease association prediction
por: Wei, Zheng, et al.
Publicado: (2022) -
An improved random forest-based computational model for predicting novel miRNA-disease associations
por: Yao, Dengju, et al.
Publicado: (2019) -
Predicting LncRNA–Disease Association by a Random Walk With Restart on Multiplex and Heterogeneous Networks
por: Yao, Yuhua, et al.
Publicado: (2021) -
Predicting lncRNA–Protein Interactions by Heterogenous Network Embedding
por: Zhao, Guoqing, et al.
Publicado: (2022)