Cargando…

Mechanistic target of rapamycin and an extracellular signaling-regulated kinases 1 and 2 signaling participate in the process of acetate regulating lipid metabolism and hormone-sensitive lipase expression

OBJECTIVE: Acetate plays an important role in host lipid metabolism. However, the network of acetate-regulated lipid metabolism remains unclear. Previous studies show that mitogen-activated protein kinases (MAPKs) and mechanistic target of rapamycin (mTOR) play a crucial role in lipid metabolism. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yujuan, Fu, Chunyan, Liu, Lei, Liu, Yongxu, Li, Fuchang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Animal Bioscience 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449403/
https://www.ncbi.nlm.nih.gov/pubmed/34727637
http://dx.doi.org/10.5713/ab.21.0341
Descripción
Sumario:OBJECTIVE: Acetate plays an important role in host lipid metabolism. However, the network of acetate-regulated lipid metabolism remains unclear. Previous studies show that mitogen-activated protein kinases (MAPKs) and mechanistic target of rapamycin (mTOR) play a crucial role in lipid metabolism. We hypothesize that acetate could affect MAPKs and/or mTOR signaling and then regulate lipid metabolism. The present study investigated whether any cross talk occurs among MAPKs, mTOR and acetate in regulating lipid metabolism. METHODS: The ceramide C6 (an extracellular signaling-regulated kinases 1 and 2 [ERK1/2] activator) and MHY1485 (a mTOR activator) were used to treat rabbit adipose-derived stem cells (ADSCs) with or without acetate, respectively. RESULTS: It indicated that acetate (9 mM) treatment for 48 h decreased the lipid deposition in rabbit ADSCs. Acetate treatment decreased significantly phosphorylated protein levels of ERK1/2 and mTOR but significantly increased mRNA level of hormone-sensitive lipase (HSL). Acetate treatment did not significantly alter the phosphorylated protein level of p38 MAPK and c-Jun aminoterminal kinase (JNK). Activation of ERK1/2 and mTOR by respective addition in media with ceramide C6 and MHY1485 significantly attenuated decreased lipid deposition and increased HSL expression caused by acetate. CONCLUSION: Our results suggest that ERK1/2 and mTOR signaling pathways are associated with acetate regulated HSL gene expression and lipid deposition.