Cargando…

Live-cell metabolic analysis of oligodendroglia isolated from postnatal mouse brain and spinal cord

This protocol describes isolation and live-cell metabolic analysis of O4+ oligodendroglia from brain and spinal cord of postnatal mice. We have optimized existing protocols for O4+ isolation from neonatal brain and expanded the protocol to include isolation of highly viable oligodendroglia from spin...

Descripción completa

Detalles Bibliográficos
Autores principales: Khandker, Luipa, Wood, Teresa L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449657/
https://www.ncbi.nlm.nih.gov/pubmed/36092821
http://dx.doi.org/10.1016/j.xpro.2022.101655
_version_ 1784784350509793280
author Khandker, Luipa
Wood, Teresa L.
author_facet Khandker, Luipa
Wood, Teresa L.
author_sort Khandker, Luipa
collection PubMed
description This protocol describes isolation and live-cell metabolic analysis of O4+ oligodendroglia from brain and spinal cord of postnatal mice. We have optimized existing protocols for O4+ isolation from neonatal brain and expanded the protocol to include isolation of highly viable oligodendroglia from spinal cords of postnatal mice up to 18 days of age. Isolated oligodendroglia can be used in multiple downstream analyses, and here we describe an optimized real-time metabolic assay using Agilent Seahorse Analyzer to measure mitochondrial respiration. For complete details on the use and execution of this protocol, please refer to Khandker et al. (2022).
format Online
Article
Text
id pubmed-9449657
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-94496572022-09-08 Live-cell metabolic analysis of oligodendroglia isolated from postnatal mouse brain and spinal cord Khandker, Luipa Wood, Teresa L. STAR Protoc Protocol This protocol describes isolation and live-cell metabolic analysis of O4+ oligodendroglia from brain and spinal cord of postnatal mice. We have optimized existing protocols for O4+ isolation from neonatal brain and expanded the protocol to include isolation of highly viable oligodendroglia from spinal cords of postnatal mice up to 18 days of age. Isolated oligodendroglia can be used in multiple downstream analyses, and here we describe an optimized real-time metabolic assay using Agilent Seahorse Analyzer to measure mitochondrial respiration. For complete details on the use and execution of this protocol, please refer to Khandker et al. (2022). Elsevier 2022-08-27 /pmc/articles/PMC9449657/ /pubmed/36092821 http://dx.doi.org/10.1016/j.xpro.2022.101655 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Khandker, Luipa
Wood, Teresa L.
Live-cell metabolic analysis of oligodendroglia isolated from postnatal mouse brain and spinal cord
title Live-cell metabolic analysis of oligodendroglia isolated from postnatal mouse brain and spinal cord
title_full Live-cell metabolic analysis of oligodendroglia isolated from postnatal mouse brain and spinal cord
title_fullStr Live-cell metabolic analysis of oligodendroglia isolated from postnatal mouse brain and spinal cord
title_full_unstemmed Live-cell metabolic analysis of oligodendroglia isolated from postnatal mouse brain and spinal cord
title_short Live-cell metabolic analysis of oligodendroglia isolated from postnatal mouse brain and spinal cord
title_sort live-cell metabolic analysis of oligodendroglia isolated from postnatal mouse brain and spinal cord
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449657/
https://www.ncbi.nlm.nih.gov/pubmed/36092821
http://dx.doi.org/10.1016/j.xpro.2022.101655
work_keys_str_mv AT khandkerluipa livecellmetabolicanalysisofoligodendrogliaisolatedfrompostnatalmousebrainandspinalcord
AT woodteresal livecellmetabolicanalysisofoligodendrogliaisolatedfrompostnatalmousebrainandspinalcord