Cargando…

Estimation of virus-mediated cell fusion rate of SARS-CoV-2

Several viruses have the ability to form large multinucleated cells known as syncytia. Many properties of syncytia and the role they play in the evolution of a viral infection are not well understood. One basic question that has not yet been answered is how quickly syncytia form. We use a novel math...

Descripción completa

Detalles Bibliográficos
Autores principales: Amidei, Ava, Dobrovolny, Hana M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449781/
https://www.ncbi.nlm.nih.gov/pubmed/36088794
http://dx.doi.org/10.1016/j.virol.2022.08.016
Descripción
Sumario:Several viruses have the ability to form large multinucleated cells known as syncytia. Many properties of syncytia and the role they play in the evolution of a viral infection are not well understood. One basic question that has not yet been answered is how quickly syncytia form. We use a novel mathematical model of cell-cell fusion assays and apply it to experimental data from SARS-CoV-2 fusion assays to provide the first estimates of virus-mediated cell fusion rate. We find that for SARS-CoV2, the fusion rate is in the range of 6 × 10(−4)–12×10(−4)/h. We also use our model to compare fusion rates when the protease TMPRSS2 is overexpressed (2–4 times larger fusion rate), when the protease furin is removed (one third the original fusion rate), and when the spike protein is altered (1/10th the original fusion rate). The use of mathematical models allows us to provide additional quantitative information about syncytia formation.