Cargando…
Effect of heat inactivation and bulk lysis on real-time reverse transcription PCR detection of the SARS-COV-2: an experimental study
OBJECTIVE: This study aimed to investigate the effect of heat inactivation and chemical bulklysis on SARS-CoV-2 detection. RESULTS: About 6.2% (5/80) of samples were changed to negative results in heat inactivation at 60 °C and about 8.7% (7/80) of samples were changed to negative in heat inactivati...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449930/ https://www.ncbi.nlm.nih.gov/pubmed/36071470 http://dx.doi.org/10.1186/s13104-022-06184-z |
Sumario: | OBJECTIVE: This study aimed to investigate the effect of heat inactivation and chemical bulklysis on SARS-CoV-2 detection. RESULTS: About 6.2% (5/80) of samples were changed to negative results in heat inactivation at 60 °C and about 8.7% (7/80) of samples were changed to negative in heat inactivation at 100 °C. The Ct values of heat-inactivated samples (at 60 °C, at 100 °C, and bulk lysis) were significantly different from the temperature at 56 °C. The effect of heat on Ct value should be considered when interpreting diagnostic PCR results from clinical samples which could have an initial low virus concentration. The efficacy of heat-inactivation varies greatly depending on temperature and duration. Local validation of heat-inactivation and its effects is therefore essential for molecular testing. |
---|