Cargando…
A comparative study of pre-trained language models for named entity recognition in clinical trial eligibility criteria from multiple corpora
BACKGROUND: Clinical trial protocols are the foundation for advancing medical sciences, however, the extraction of accurate and meaningful information from the original clinical trials is very challenging due to the complex and unstructured texts of such documents. Named entity recognition (NER) is...
Autores principales: | Li, Jianfu, Wei, Qiang, Ghiasvand, Omid, Chen, Miao, Lobanov, Victor, Weng, Chunhua, Xu, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450226/ https://www.ncbi.nlm.nih.gov/pubmed/36068551 http://dx.doi.org/10.1186/s12911-022-01967-7 |
Ejemplares similares
-
Ensemble of Deep Masked Language Models for Effective Named Entity Recognition in Health and Life Science Corpora
por: Naderi, Nona, et al.
Publicado: (2021) -
BiodivNERE: Gold standard corpora for named entity recognition and relation extraction in the biodiversity domain
por: Abdelmageed, Nora, et al.
Publicado: (2022) -
Various criteria in the evaluation of biomedical named entity recognition
por: Tsai, Richard Tzong-Han, et al.
Publicado: (2006) -
A pre-training and self-training approach for biomedical named entity recognition
por: Gao, Shang, et al.
Publicado: (2021) -
An analysis on the entity annotations in biological corpora
por: Neves, Mariana
Publicado: (2014)