Cargando…
PLAS-5k: Dataset of Protein-Ligand Affinities from Molecular Dynamics for Machine Learning Applications
Computational methods and recently modern machine learning methods have played a key role in structure-based drug design. Though several benchmarking datasets are available for machine learning applications in virtual screening, accurate prediction of binding affinity for a protein-ligand complex re...
Autores principales: | Korlepara, Divya B., Vasavi, C. S., Jeurkar, Shruti, Pal, Pradeep Kumar, Roy, Subhajit, Mehta, Sarvesh, Sharma, Shubham, Kumar, Vishal, Muvva, Charuvaka, Sridharan, Bhuvanesh, Garg, Akshit, Modee, Rohit, Bhati, Agastya P., Nayar, Divya, Priyakumar, U. Deva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9451116/ https://www.ncbi.nlm.nih.gov/pubmed/36071074 http://dx.doi.org/10.1038/s41597-022-01631-9 |
Ejemplares similares
-
Latent Biases in Machine Learning Models for Predicting
Binding Affinities Using Popular Data Sets
por: Kanakala, Ganesh Chandan, et al.
Publicado: (2023) -
Machine Learning Based Clinical Decision Support System for Early COVID-19 Mortality Prediction
por: Karthikeyan, Akshaya, et al.
Publicado: (2021) -
MO-MEMES: A method for accelerating virtual screening using multi-objective Bayesian optimization
por: Mehta, Sarvesh, et al.
Publicado: (2022) -
PlasClass improves plasmid sequence classification
por: Pellow, David, et al.
Publicado: (2020) -
MMpI: A WideRange of Available Compounds of Matrix Metalloproteinase Inhibitors
por: Muvva, Charuvaka, et al.
Publicado: (2016)