Cargando…
Tackling over-smoothing in multi-label image classification using graphical convolution neural network
The importance of the graphical convolution network in multi-label classification has grown in recent years due to its label embedding representation capabilities. The graphical convolution network is able to capture the label dependencies using the correlation between labels. However, the graphical...
Autores principales: | Chauhan, Vikas, Tiwari, Aruna, Venkata, Boppudi, Naik, Vislavath |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9451128/ http://dx.doi.org/10.1007/s12530-022-09463-z |
Ejemplares similares
-
Classification of Fluorescently Labelled Maize Kernels Using Convolutional Neural Networks
por: Wang, Zilong, et al.
Publicado: (2023) -
Classification of Depression and Its Severity Based on Multiple Audio Features Using a Graphical Convolutional Neural Network
por: Ishimaru, Momoko, et al.
Publicado: (2023) -
Multi-view classification with convolutional neural networks
por: Seeland, Marco, et al.
Publicado: (2021) -
Time-series analysis with smoothed Convolutional Neural Network
por: Wibawa, Aji Prasetya, et al.
Publicado: (2022) -
Correction: Multi-view classification with convolutional neural networks
Publicado: (2021)