Cargando…

Fused Deposition Modeling 3D Printing in Oral and Maxillofacial Surgery: Problems and Solutions

Three-dimensional (3D) printing technology in medicine is one of the new and innovative technology for fabricating 3D models of complex anatomical structures that can be observed both visually and haptically. Patient-specific 3D models fabricated through this process are currently being used for var...

Descripción completa

Detalles Bibliográficos
Autores principales: Kamio, Takashi, Onda, Takeshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9451925/
https://www.ncbi.nlm.nih.gov/pubmed/36105906
http://dx.doi.org/10.7759/cureus.28906
_version_ 1784784830038278144
author Kamio, Takashi
Onda, Takeshi
author_facet Kamio, Takashi
Onda, Takeshi
author_sort Kamio, Takashi
collection PubMed
description Three-dimensional (3D) printing technology in medicine is one of the new and innovative technology for fabricating 3D models of complex anatomical structures that can be observed both visually and haptically. Patient-specific 3D models fabricated through this process are currently being used for various purposes, including surgical simulation, training, and medical education. Most of the personal use/low-end desktop 3D printers that are becoming widespread are fused deposition modeling (FDM) 3D printers. Compared to professional/high-end 3D printers, the price of the personal use/low-end desktop FDM 3D printer itself, filament, and running costs are lower; it can lower the economic bottleneck for introducing 3D printing technology into clinical practice, such as surgical simulation. With a desktop FDM 3D printer and a general-purpose PC, anyone can now rapidly fabricate 3D models on their own without having to rely on 3D printing labs and specialized technicians. However, it is also true that FDM 3D printers, due to their mechanical characteristics, encounter many difficulties and problems that emerge during the 3D printing process. Knowledge, know-how, and tips about FDM 3D printers have been introduced in various media, and it has become easy to know about them worldwide via the Internet. However, there has been no comprehensive technical review to date to produce osseous 3D models for use in oral and maxillofacial surgery. In this report, to create 3D models according to the characteristics of maxillofacial and oral surgery, we enable surgeons themselves to create 3D models smoothly by presenting ideas for CT scanning, points to note when exporting Digital Imaging and Communications in Medicine (DICOM) image data, how to create optimal stereolithography (STL) models, and problems and solutions for 3D printing.
format Online
Article
Text
id pubmed-9451925
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Cureus
record_format MEDLINE/PubMed
spelling pubmed-94519252022-09-13 Fused Deposition Modeling 3D Printing in Oral and Maxillofacial Surgery: Problems and Solutions Kamio, Takashi Onda, Takeshi Cureus Medical Simulation Three-dimensional (3D) printing technology in medicine is one of the new and innovative technology for fabricating 3D models of complex anatomical structures that can be observed both visually and haptically. Patient-specific 3D models fabricated through this process are currently being used for various purposes, including surgical simulation, training, and medical education. Most of the personal use/low-end desktop 3D printers that are becoming widespread are fused deposition modeling (FDM) 3D printers. Compared to professional/high-end 3D printers, the price of the personal use/low-end desktop FDM 3D printer itself, filament, and running costs are lower; it can lower the economic bottleneck for introducing 3D printing technology into clinical practice, such as surgical simulation. With a desktop FDM 3D printer and a general-purpose PC, anyone can now rapidly fabricate 3D models on their own without having to rely on 3D printing labs and specialized technicians. However, it is also true that FDM 3D printers, due to their mechanical characteristics, encounter many difficulties and problems that emerge during the 3D printing process. Knowledge, know-how, and tips about FDM 3D printers have been introduced in various media, and it has become easy to know about them worldwide via the Internet. However, there has been no comprehensive technical review to date to produce osseous 3D models for use in oral and maxillofacial surgery. In this report, to create 3D models according to the characteristics of maxillofacial and oral surgery, we enable surgeons themselves to create 3D models smoothly by presenting ideas for CT scanning, points to note when exporting Digital Imaging and Communications in Medicine (DICOM) image data, how to create optimal stereolithography (STL) models, and problems and solutions for 3D printing. Cureus 2022-09-07 /pmc/articles/PMC9451925/ /pubmed/36105906 http://dx.doi.org/10.7759/cureus.28906 Text en Copyright © 2022, Kamio et al. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Medical Simulation
Kamio, Takashi
Onda, Takeshi
Fused Deposition Modeling 3D Printing in Oral and Maxillofacial Surgery: Problems and Solutions
title Fused Deposition Modeling 3D Printing in Oral and Maxillofacial Surgery: Problems and Solutions
title_full Fused Deposition Modeling 3D Printing in Oral and Maxillofacial Surgery: Problems and Solutions
title_fullStr Fused Deposition Modeling 3D Printing in Oral and Maxillofacial Surgery: Problems and Solutions
title_full_unstemmed Fused Deposition Modeling 3D Printing in Oral and Maxillofacial Surgery: Problems and Solutions
title_short Fused Deposition Modeling 3D Printing in Oral and Maxillofacial Surgery: Problems and Solutions
title_sort fused deposition modeling 3d printing in oral and maxillofacial surgery: problems and solutions
topic Medical Simulation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9451925/
https://www.ncbi.nlm.nih.gov/pubmed/36105906
http://dx.doi.org/10.7759/cureus.28906
work_keys_str_mv AT kamiotakashi fuseddepositionmodeling3dprintinginoralandmaxillofacialsurgeryproblemsandsolutions
AT ondatakeshi fuseddepositionmodeling3dprintinginoralandmaxillofacialsurgeryproblemsandsolutions