Cargando…

The Effects and Mechanisms of Sennoside A on Inducing Cytotoxicity, Apoptosis, and Inhibiting Metastasis in Human Chondrosarcoma Cells

Currently, developing therapeutic strategies for chondrosarcoma (CS) remains important. Sennoside A (SA), a dianthrone glycoside from Senna and Rhubarb, is widely used as an irritant laxative, weight-loss agent, or dietary supplement, which possesses various bioactive properties such as laxative, an...

Descripción completa

Detalles Bibliográficos
Autores principales: Le, Jiamei, Ji, Houlin, Pi, Peixian, Chen, Kaijie, Gu, Xuefeng, Ma, Yujie, Fu, Yi, Sun, Yongning, Zhou, Xiaoxiao, Wu, Hailong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9451980/
https://www.ncbi.nlm.nih.gov/pubmed/36091590
http://dx.doi.org/10.1155/2022/8063497
Descripción
Sumario:Currently, developing therapeutic strategies for chondrosarcoma (CS) remains important. Sennoside A (SA), a dianthrone glycoside from Senna and Rhubarb, is widely used as an irritant laxative, weight-loss agent, or dietary supplement, which possesses various bioactive properties such as laxative, antiobesity, and hypoglycemic activities. For the first time, our results suggested that cell proliferation and metastasis were inhibited by SA in CS SW1353 cells. SA induced cell growth arrest by inhibiting cell proliferation. The changes of N-cadherin and E-cadherin levels, the markers associated with epithelial mesenchymal transition (EMT), suggested the EMT-related mechanism of SA in inhibiting cell metastasis. Besides, SA significantly stimulated apoptosis in CS SW1353 cells, leading to cell death. The increase of Bax/Bcl2 ratio confirmed that the internal mitochondrial pathway of apoptosis was regulated by SA. In addition, the prediction of network pharmacology analysis suggested that the possible pathways of SA treatment for CS included the Wnt signaling pathway. Notably, the protein levels of the components in the Wnt pathway, such as Wnt3a, β-catenin, and c-Myc, were downregulated by SA in CS SW1353 cells. To sum up, these results demonstrated that the suppression of the growth, metastasis and the stimulation of cytotoxicity, and apoptosis mediated by SA in CS SW1353 cells were possibly caused by the inhibition of the Wnt/β-catenin pathway, indicating an underlying therapeutic prospect of SA for chondrosarcoma.