Cargando…
Archaic chaperone–usher pili self-secrete into superelastic zigzag springs
Adhesive pili assembled through the chaperone–usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria(1–3). Archaic chaperone–usher pathway pili, the most diverse and widespread chaperone–usher pathway adhesins, are promising vacci...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452303/ https://www.ncbi.nlm.nih.gov/pubmed/35853476 http://dx.doi.org/10.1038/s41586-022-05095-0 |
_version_ | 1784784901855248384 |
---|---|
author | Pakharukova, Natalia Malmi, Henri Tuittila, Minna Dahlberg, Tobias Ghosal, Debnath Chang, Yi-Wei Myint, Si Lhyam Paavilainen, Sari Knight, Stefan David Lamminmäki, Urpo Uhlin, Bernt Eric Andersson, Magnus Jensen, Grant Zavialov, Anton V. |
author_facet | Pakharukova, Natalia Malmi, Henri Tuittila, Minna Dahlberg, Tobias Ghosal, Debnath Chang, Yi-Wei Myint, Si Lhyam Paavilainen, Sari Knight, Stefan David Lamminmäki, Urpo Uhlin, Bernt Eric Andersson, Magnus Jensen, Grant Zavialov, Anton V. |
author_sort | Pakharukova, Natalia |
collection | PubMed |
description | Adhesive pili assembled through the chaperone–usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria(1–3). Archaic chaperone–usher pathway pili, the most diverse and widespread chaperone–usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens(1,4,5). However, their architecture and assembly–secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii—a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections. |
format | Online Article Text |
id | pubmed-9452303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-94523032022-09-09 Archaic chaperone–usher pili self-secrete into superelastic zigzag springs Pakharukova, Natalia Malmi, Henri Tuittila, Minna Dahlberg, Tobias Ghosal, Debnath Chang, Yi-Wei Myint, Si Lhyam Paavilainen, Sari Knight, Stefan David Lamminmäki, Urpo Uhlin, Bernt Eric Andersson, Magnus Jensen, Grant Zavialov, Anton V. Nature Article Adhesive pili assembled through the chaperone–usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria(1–3). Archaic chaperone–usher pathway pili, the most diverse and widespread chaperone–usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens(1,4,5). However, their architecture and assembly–secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii—a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections. Nature Publishing Group UK 2022-07-19 2022 /pmc/articles/PMC9452303/ /pubmed/35853476 http://dx.doi.org/10.1038/s41586-022-05095-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Pakharukova, Natalia Malmi, Henri Tuittila, Minna Dahlberg, Tobias Ghosal, Debnath Chang, Yi-Wei Myint, Si Lhyam Paavilainen, Sari Knight, Stefan David Lamminmäki, Urpo Uhlin, Bernt Eric Andersson, Magnus Jensen, Grant Zavialov, Anton V. Archaic chaperone–usher pili self-secrete into superelastic zigzag springs |
title | Archaic chaperone–usher pili self-secrete into superelastic zigzag springs |
title_full | Archaic chaperone–usher pili self-secrete into superelastic zigzag springs |
title_fullStr | Archaic chaperone–usher pili self-secrete into superelastic zigzag springs |
title_full_unstemmed | Archaic chaperone–usher pili self-secrete into superelastic zigzag springs |
title_short | Archaic chaperone–usher pili self-secrete into superelastic zigzag springs |
title_sort | archaic chaperone–usher pili self-secrete into superelastic zigzag springs |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452303/ https://www.ncbi.nlm.nih.gov/pubmed/35853476 http://dx.doi.org/10.1038/s41586-022-05095-0 |
work_keys_str_mv | AT pakharukovanatalia archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings AT malmihenri archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings AT tuittilaminna archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings AT dahlbergtobias archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings AT ghosaldebnath archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings AT changyiwei archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings AT myintsilhyam archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings AT paavilainensari archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings AT knightstefandavid archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings AT lamminmakiurpo archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings AT uhlinbernteric archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings AT anderssonmagnus archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings AT jensengrant archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings AT zavialovantonv archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings |