Cargando…

Archaic chaperone–usher pili self-secrete into superelastic zigzag springs

Adhesive pili assembled through the chaperone–usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria(1–3). Archaic chaperone–usher pathway pili, the most diverse and widespread chaperone–usher pathway adhesins, are promising vacci...

Descripción completa

Detalles Bibliográficos
Autores principales: Pakharukova, Natalia, Malmi, Henri, Tuittila, Minna, Dahlberg, Tobias, Ghosal, Debnath, Chang, Yi-Wei, Myint, Si Lhyam, Paavilainen, Sari, Knight, Stefan David, Lamminmäki, Urpo, Uhlin, Bernt Eric, Andersson, Magnus, Jensen, Grant, Zavialov, Anton V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452303/
https://www.ncbi.nlm.nih.gov/pubmed/35853476
http://dx.doi.org/10.1038/s41586-022-05095-0
_version_ 1784784901855248384
author Pakharukova, Natalia
Malmi, Henri
Tuittila, Minna
Dahlberg, Tobias
Ghosal, Debnath
Chang, Yi-Wei
Myint, Si Lhyam
Paavilainen, Sari
Knight, Stefan David
Lamminmäki, Urpo
Uhlin, Bernt Eric
Andersson, Magnus
Jensen, Grant
Zavialov, Anton V.
author_facet Pakharukova, Natalia
Malmi, Henri
Tuittila, Minna
Dahlberg, Tobias
Ghosal, Debnath
Chang, Yi-Wei
Myint, Si Lhyam
Paavilainen, Sari
Knight, Stefan David
Lamminmäki, Urpo
Uhlin, Bernt Eric
Andersson, Magnus
Jensen, Grant
Zavialov, Anton V.
author_sort Pakharukova, Natalia
collection PubMed
description Adhesive pili assembled through the chaperone–usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria(1–3). Archaic chaperone–usher pathway pili, the most diverse and widespread chaperone–usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens(1,4,5). However, their architecture and assembly–secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii—a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.
format Online
Article
Text
id pubmed-9452303
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-94523032022-09-09 Archaic chaperone–usher pili self-secrete into superelastic zigzag springs Pakharukova, Natalia Malmi, Henri Tuittila, Minna Dahlberg, Tobias Ghosal, Debnath Chang, Yi-Wei Myint, Si Lhyam Paavilainen, Sari Knight, Stefan David Lamminmäki, Urpo Uhlin, Bernt Eric Andersson, Magnus Jensen, Grant Zavialov, Anton V. Nature Article Adhesive pili assembled through the chaperone–usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria(1–3). Archaic chaperone–usher pathway pili, the most diverse and widespread chaperone–usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens(1,4,5). However, their architecture and assembly–secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii—a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections. Nature Publishing Group UK 2022-07-19 2022 /pmc/articles/PMC9452303/ /pubmed/35853476 http://dx.doi.org/10.1038/s41586-022-05095-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Pakharukova, Natalia
Malmi, Henri
Tuittila, Minna
Dahlberg, Tobias
Ghosal, Debnath
Chang, Yi-Wei
Myint, Si Lhyam
Paavilainen, Sari
Knight, Stefan David
Lamminmäki, Urpo
Uhlin, Bernt Eric
Andersson, Magnus
Jensen, Grant
Zavialov, Anton V.
Archaic chaperone–usher pili self-secrete into superelastic zigzag springs
title Archaic chaperone–usher pili self-secrete into superelastic zigzag springs
title_full Archaic chaperone–usher pili self-secrete into superelastic zigzag springs
title_fullStr Archaic chaperone–usher pili self-secrete into superelastic zigzag springs
title_full_unstemmed Archaic chaperone–usher pili self-secrete into superelastic zigzag springs
title_short Archaic chaperone–usher pili self-secrete into superelastic zigzag springs
title_sort archaic chaperone–usher pili self-secrete into superelastic zigzag springs
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452303/
https://www.ncbi.nlm.nih.gov/pubmed/35853476
http://dx.doi.org/10.1038/s41586-022-05095-0
work_keys_str_mv AT pakharukovanatalia archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings
AT malmihenri archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings
AT tuittilaminna archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings
AT dahlbergtobias archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings
AT ghosaldebnath archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings
AT changyiwei archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings
AT myintsilhyam archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings
AT paavilainensari archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings
AT knightstefandavid archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings
AT lamminmakiurpo archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings
AT uhlinbernteric archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings
AT anderssonmagnus archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings
AT jensengrant archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings
AT zavialovantonv archaicchaperoneusherpiliselfsecreteintosuperelasticzigzagsprings