Cargando…

Synthesis and characterization of fluorescence poly(amidoamine) dendrimer-based pigments

In this work, we looked at how to make fluorescence hybrid poly(amidoamine) dendrimer (PAMAM) dendrimers using calcozine red 6G and coumarin end groups. After synthesis of ethylenediamine (EDA)-cored 4th generation PAMAM dendrimer (G4.0), surface functional groups is reacted with calcozine red 6G (R...

Descripción completa

Detalles Bibliográficos
Autores principales: Golshan, Marzieh, Gheitarani, Behnam, Salami-Kalajahi, Mehdi, Hosseini, Mahdi Salami
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452493/
https://www.ncbi.nlm.nih.gov/pubmed/36071149
http://dx.doi.org/10.1038/s41598-022-19712-5
Descripción
Sumario:In this work, we looked at how to make fluorescence hybrid poly(amidoamine) dendrimer (PAMAM) dendrimers using calcozine red 6G and coumarin end groups. After synthesis of ethylenediamine (EDA)-cored 4th generation PAMAM dendrimer (G4.0), surface functional groups is reacted with calcozine red 6G (Rh6G) and 7-methacryloyloxy-4-methylcoumarin. Fourier transform infrared spectroscopy, proton nuclear magnetic resonance ((1)H NMR), and X-ray diffraction are used to characterize the structure of synthesized fluorescent hybrid dendrimers. Optical properties are demonstrated using a fluorescence spectrophotometer, and UV–Vis–NIR reflectance spectra. According to UV–Vis–NIR reflectance spectra, hybrid dendrimers were transparent in the NIR range. Moreover, quantum yield (Φs) of hybrid dendrimers was calculated in dimethylformamide (DMF), ethanol, dimethyl sulfoxide (DMSO), and distilled water (H(2)O). Dendrimers in which Rh6G was utilized to modification showed the maximum quantum yield in ethanol due to great interaction of structure with ethanol and the arrangement of ring-opened amide shape of calcozine red 6G.