Cargando…

Pushing the limits of remote RF sensing by reading lips under the face mask

The problem of Lip-reading has become an important research challenge in recent years. The goal is to recognise speech from lip movements. Most of the Lip-reading technologies developed so far are camera-based, which require video recording of the target. However, these technologies have well-known...

Descripción completa

Detalles Bibliográficos
Autores principales: Hameed, Hira, Usman, Muhammad, Tahir, Ahsen, Hussain, Amir, Abbas, Hasan, Cui, Tie Jun, Imran, Muhammad Ali, Abbasi, Qammer H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452506/
https://www.ncbi.nlm.nih.gov/pubmed/36071056
http://dx.doi.org/10.1038/s41467-022-32231-1
Descripción
Sumario:The problem of Lip-reading has become an important research challenge in recent years. The goal is to recognise speech from lip movements. Most of the Lip-reading technologies developed so far are camera-based, which require video recording of the target. However, these technologies have well-known limitations of occlusion and ambient lighting with serious privacy concerns. Furthermore, vision-based technologies are not useful for multi-modal hearing aids in the coronavirus (COVID-19) environment, where face masks have become a norm. This paper aims to solve the fundamental limitations of camera-based systems by proposing a radio frequency (RF) based Lip-reading framework, having an ability to read lips under face masks. The framework employs Wi-Fi and radar technologies as enablers of RF sensing based Lip-reading. A dataset comprising of vowels A, E, I, O, U and empty (static/closed lips) is collected using both technologies, with a face mask. The collected data is used to train machine learning (ML) and deep learning (DL) models. A high classification accuracy of 95% is achieved on the Wi-Fi data utilising neural network (NN) models. Moreover, similar accuracy is achieved by VGG16 deep learning model on the collected radar-based dataset.