Cargando…

Temperature evolution of dense gold and diamond heated by energetic laser-driven aluminum ions

Recent studies have shown that energetic laser-driven ions with some energy spread can heat small solid-density samples uniformly. The balance among the energy losses of the ions with different kinetic energies results in uniform heating. Although heating with an energetic laser-driven ion beam is c...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, C., Lee, S., Bang, W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452511/
https://www.ncbi.nlm.nih.gov/pubmed/36071154
http://dx.doi.org/10.1038/s41598-022-18758-9
Descripción
Sumario:Recent studies have shown that energetic laser-driven ions with some energy spread can heat small solid-density samples uniformly. The balance among the energy losses of the ions with different kinetic energies results in uniform heating. Although heating with an energetic laser-driven ion beam is completed within a nanosecond and is often considered sufficiently fast, it is not instantaneous. Here we present a theoretical study of the temporal evolution of the temperature of solid-density gold and diamond samples heated by a quasimonoenergetic aluminum ion beam. We calculate the temporal evolution of the predicted temperatures of the samples using the available stopping power data and the SESAME equation-of-state tables. We find that the temperature distribution is initially very uniform, which becomes less uniform during the heating process. Then, the temperature uniformity gradually improves, and a good temperature uniformity is obtained toward the end of the heating process.