Cargando…

devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data

A major informatic challenge in single cell RNA-sequencing analysis is the precise annotation of datasets where cells exhibit complex multilayered identities or transitory states. Here, we present devCellPy a highly accurate and precise machine learning-enabled tool that enables automated prediction...

Descripción completa

Detalles Bibliográficos
Autores principales: Galdos, Francisco X., Xu, Sidra, Goodyer, William R., Duan, Lauren, Huang, Yuhsin V., Lee, Soah, Zhu, Han, Lee, Carissa, Wei, Nicholas, Lee, Daniel, Wu, Sean M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452519/
https://www.ncbi.nlm.nih.gov/pubmed/36071107
http://dx.doi.org/10.1038/s41467-022-33045-x
Descripción
Sumario:A major informatic challenge in single cell RNA-sequencing analysis is the precise annotation of datasets where cells exhibit complex multilayered identities or transitory states. Here, we present devCellPy a highly accurate and precise machine learning-enabled tool that enables automated prediction of cell types across complex annotation hierarchies. To demonstrate the power of devCellPy, we construct a murine cardiac developmental atlas from published datasets encompassing 104,199 cells from E6.5-E16.5 and train devCellPy to generate a cardiac prediction algorithm. Using this algorithm, we observe a high prediction accuracy (>90%) across multiple layers of annotation and across de novo murine developmental data. Furthermore, we conduct a cross-species prediction of cardiomyocyte subtypes from in vitro-derived human induced pluripotent stem cells and unexpectedly uncover a predominance of left ventricular (LV) identity that we confirmed by an LV-specific TBX5 lineage tracing system. Together, our results show devCellPy to be a useful tool for automated cell prediction across complex cellular hierarchies, species, and experimental systems.