Cargando…
devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data
A major informatic challenge in single cell RNA-sequencing analysis is the precise annotation of datasets where cells exhibit complex multilayered identities or transitory states. Here, we present devCellPy a highly accurate and precise machine learning-enabled tool that enables automated prediction...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452519/ https://www.ncbi.nlm.nih.gov/pubmed/36071107 http://dx.doi.org/10.1038/s41467-022-33045-x |
_version_ | 1784784927407996928 |
---|---|
author | Galdos, Francisco X. Xu, Sidra Goodyer, William R. Duan, Lauren Huang, Yuhsin V. Lee, Soah Zhu, Han Lee, Carissa Wei, Nicholas Lee, Daniel Wu, Sean M. |
author_facet | Galdos, Francisco X. Xu, Sidra Goodyer, William R. Duan, Lauren Huang, Yuhsin V. Lee, Soah Zhu, Han Lee, Carissa Wei, Nicholas Lee, Daniel Wu, Sean M. |
author_sort | Galdos, Francisco X. |
collection | PubMed |
description | A major informatic challenge in single cell RNA-sequencing analysis is the precise annotation of datasets where cells exhibit complex multilayered identities or transitory states. Here, we present devCellPy a highly accurate and precise machine learning-enabled tool that enables automated prediction of cell types across complex annotation hierarchies. To demonstrate the power of devCellPy, we construct a murine cardiac developmental atlas from published datasets encompassing 104,199 cells from E6.5-E16.5 and train devCellPy to generate a cardiac prediction algorithm. Using this algorithm, we observe a high prediction accuracy (>90%) across multiple layers of annotation and across de novo murine developmental data. Furthermore, we conduct a cross-species prediction of cardiomyocyte subtypes from in vitro-derived human induced pluripotent stem cells and unexpectedly uncover a predominance of left ventricular (LV) identity that we confirmed by an LV-specific TBX5 lineage tracing system. Together, our results show devCellPy to be a useful tool for automated cell prediction across complex cellular hierarchies, species, and experimental systems. |
format | Online Article Text |
id | pubmed-9452519 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-94525192022-09-09 devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data Galdos, Francisco X. Xu, Sidra Goodyer, William R. Duan, Lauren Huang, Yuhsin V. Lee, Soah Zhu, Han Lee, Carissa Wei, Nicholas Lee, Daniel Wu, Sean M. Nat Commun Article A major informatic challenge in single cell RNA-sequencing analysis is the precise annotation of datasets where cells exhibit complex multilayered identities or transitory states. Here, we present devCellPy a highly accurate and precise machine learning-enabled tool that enables automated prediction of cell types across complex annotation hierarchies. To demonstrate the power of devCellPy, we construct a murine cardiac developmental atlas from published datasets encompassing 104,199 cells from E6.5-E16.5 and train devCellPy to generate a cardiac prediction algorithm. Using this algorithm, we observe a high prediction accuracy (>90%) across multiple layers of annotation and across de novo murine developmental data. Furthermore, we conduct a cross-species prediction of cardiomyocyte subtypes from in vitro-derived human induced pluripotent stem cells and unexpectedly uncover a predominance of left ventricular (LV) identity that we confirmed by an LV-specific TBX5 lineage tracing system. Together, our results show devCellPy to be a useful tool for automated cell prediction across complex cellular hierarchies, species, and experimental systems. Nature Publishing Group UK 2022-09-07 /pmc/articles/PMC9452519/ /pubmed/36071107 http://dx.doi.org/10.1038/s41467-022-33045-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Galdos, Francisco X. Xu, Sidra Goodyer, William R. Duan, Lauren Huang, Yuhsin V. Lee, Soah Zhu, Han Lee, Carissa Wei, Nicholas Lee, Daniel Wu, Sean M. devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data |
title | devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data |
title_full | devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data |
title_fullStr | devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data |
title_full_unstemmed | devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data |
title_short | devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data |
title_sort | devcellpy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452519/ https://www.ncbi.nlm.nih.gov/pubmed/36071107 http://dx.doi.org/10.1038/s41467-022-33045-x |
work_keys_str_mv | AT galdosfranciscox devcellpyisamachinelearningenabledpipelineforautomatedannotationofcomplexmultilayeredsinglecelltranscriptomicdata AT xusidra devcellpyisamachinelearningenabledpipelineforautomatedannotationofcomplexmultilayeredsinglecelltranscriptomicdata AT goodyerwilliamr devcellpyisamachinelearningenabledpipelineforautomatedannotationofcomplexmultilayeredsinglecelltranscriptomicdata AT duanlauren devcellpyisamachinelearningenabledpipelineforautomatedannotationofcomplexmultilayeredsinglecelltranscriptomicdata AT huangyuhsinv devcellpyisamachinelearningenabledpipelineforautomatedannotationofcomplexmultilayeredsinglecelltranscriptomicdata AT leesoah devcellpyisamachinelearningenabledpipelineforautomatedannotationofcomplexmultilayeredsinglecelltranscriptomicdata AT zhuhan devcellpyisamachinelearningenabledpipelineforautomatedannotationofcomplexmultilayeredsinglecelltranscriptomicdata AT leecarissa devcellpyisamachinelearningenabledpipelineforautomatedannotationofcomplexmultilayeredsinglecelltranscriptomicdata AT weinicholas devcellpyisamachinelearningenabledpipelineforautomatedannotationofcomplexmultilayeredsinglecelltranscriptomicdata AT leedaniel devcellpyisamachinelearningenabledpipelineforautomatedannotationofcomplexmultilayeredsinglecelltranscriptomicdata AT wuseanm devcellpyisamachinelearningenabledpipelineforautomatedannotationofcomplexmultilayeredsinglecelltranscriptomicdata |