Cargando…
Deep learning multi-organ segmentation for whole mouse cryo-images including a comparison of 2D and 3D deep networks
Cryo-imaging provided 3D whole-mouse microscopic color anatomy and fluorescence images that enables biotechnology applications (e.g., stem cells and metastatic cancer). In this report, we compared three methods of organ segmentation: 2D U-Net with 2D-slices and 3D U-Net with either 3D-whole-mouse or...
Autores principales: | Liu, Yiqiao, Gargesha, Madhusudhana, Scott, Bryan, Tchilibou Wane, Arthure Olivia, Wilson, David L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452525/ https://www.ncbi.nlm.nih.gov/pubmed/36071089 http://dx.doi.org/10.1038/s41598-022-19037-3 |
Ejemplares similares
-
Quantitative analysis of metastatic breast cancer in mice using deep learning on cryo-image data
por: Liu, Yiqiao, et al.
Publicado: (2021) -
Multi-Scale Characterization of the PEPCK-C(mus) Mouse through 3D Cryo-Imaging
por: Roy, Debashish, et al.
Publicado: (2010) -
Optimal slice thickness for improved accuracy of quantitative analysis of fluorescent cell and microsphere distribution in cryo-images
por: Wuttisarnwattana, Patiwet, et al.
Publicado: (2023) -
Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases
por: Qutaish, Mohammed Q., et al.
Publicado: (2018) -
Deep learning-enabled multi-organ segmentation in whole-body mouse scans
por: Schoppe, Oliver, et al.
Publicado: (2020)