Cargando…
Chronic back pain sub-grouped via psychosocial, brain and physical factors using machine learning
Chronic back pain (CBP) is heterogenous and identifying sub-groups could improve clinical decision making. Machine learning can build upon prior sub-grouping approaches by using a data-driven approach to overcome clinician subjectivity, however, only binary classification of pain versus no-pain has...
Autores principales: | Tagliaferri, Scott D., Wilkin, Tim, Angelova, Maia, Fitzgibbon, Bernadette M., Owen, Patrick J., Miller, Clint T., Belavy, Daniel L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452567/ https://www.ncbi.nlm.nih.gov/pubmed/36071092 http://dx.doi.org/10.1038/s41598-022-19542-5 |
Ejemplares similares
-
Artificial intelligence to improve back pain outcomes and lessons learnt from clinical classification approaches: three systematic reviews
por: Tagliaferri, Scott D., et al.
Publicado: (2020) -
Towards data-driven biopsychosocial classification of non-specific chronic low back pain: a pilot study
por: Tagliaferri, Scott D., et al.
Publicado: (2023) -
The Interaction Between Psychosocial Factors and Exercise-Induced Hypoalgesia in Pain-Free Nurses
por: Johnsen, Kristian, et al.
Publicado: (2023) -
Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study
por: Belavy, Daniel L., et al.
Publicado: (2023) -
Clinician education unlikely effective for guideline-adherent medication prescription in low back pain: systematic review and meta-analysis of RCTs
por: Belavy, Daniel L, et al.
Publicado: (2022)