Cargando…

Sub-retinal pigment epithelium tubules in non-neovascular age-related macular degeneration

To describe a novel optical coherence tomography (OCT) signature resembling sub-retinal pigment epithelium (RPE) tubules (SRT) in non-neovascular age-related macular degeneration (AMD). Patients suffering from non-neovascular AMD with complete medical records and multimodal imaging were retrospectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Fragiotta, Serena, Parravano, Mariacristina, Sacconi, Riccardo, Costanzo, Eliana, De Geronimo, Daniele, Prascina, Francesco, Capuano, Vittorio, Souied, Eric H., Han, Ian C., Mullins, Robert, Querques, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452588/
https://www.ncbi.nlm.nih.gov/pubmed/36071082
http://dx.doi.org/10.1038/s41598-022-19193-6
Descripción
Sumario:To describe a novel optical coherence tomography (OCT) signature resembling sub-retinal pigment epithelium (RPE) tubules (SRT) in non-neovascular age-related macular degeneration (AMD). Patients suffering from non-neovascular AMD with complete medical records and multimodal imaging were retrospectively revised in three different tertiary care centers. Multimodal imaging included color fundus photograph, spectral-domain OCT (Spectralis, Heidelberg Engineering, Germany), fundus autofluorescence, OCT angiography (RTVue XR Avanti, Optovue, Inc., Fremont, CA). A total of 7 eyes of 7 patients with drusenoid pigment epithelium detachment (PED) were consecutively analyzed. The sub-RPE tubules appeared as ovoidal structures with a hyperreflective contour and hyporeflective interior appreciable in the sub-RPE-basal lamina (BL) space on OCT B-scan. The anatomical location of the sub-RPE formations was lying above the Bruch’s membrane in 5/7 cases (71.4%) or floating in the sub-RPE-BL space in 2/7 cases (28.6%). En-face OCTA revealed a curvilinear tubulation-like structure corresponding to SRT without flow signal. Sub-RPE tubules represent a newly identified OCT signature observed in eyes with drusenoid PED. The presumed origin may include a variant of calcified structure or alternatively activated RPE cells with some residual BL or basal laminar deposits attracted to BrM for craving oxygen.