Cargando…
Prediction of lipomatous soft tissue malignancy on MRI: comparison between machine learning applied to radiomics and deep learning
OBJECTIVES: Malignancy of lipomatous soft-tissue tumours diagnosis is suspected on magnetic resonance imaging (MRI) and requires a biopsy. The aim of this study is to compare the performances of MRI radiomic machine learning (ML) analysis with deep learning (DL) to predict malignancy in patients wit...
Autores principales: | Fradet, Guillaume, Ayde, Reina, Bottois, Hugo, El Harchaoui, Mohamed, Khaled, Wassef, Drapé, Jean-Luc, Pilleul, Frank, Bouhamama, Amine, Beuf, Olivier, Leporq, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452614/ https://www.ncbi.nlm.nih.gov/pubmed/36071368 http://dx.doi.org/10.1186/s41747-022-00295-9 |
Ejemplares similares
-
MRI-based radiomics to predict lipomatous soft tissue tumors malignancy: a pilot study
por: Leporq, Benjamin, et al.
Publicado: (2020) -
Characterization of Breast Tumors from MR Images Using Radiomics and Machine Learning Approaches
por: Faraz, Khuram, et al.
Publicado: (2023) -
Radiomics combined with transcriptomics to predict response to immunotherapy from patients treated with PD-1/PD-L1 inhibitors for advanced NSCLC
por: Bouhamama, Amine, et al.
Publicado: (2023) -
Enabling 3D-Liver Perfusion Mapping from MR-DCE Imaging Using Distributed Computing
por: Leporq, Benjamin, et al.
Publicado: (2013) -
Descending thoracic aortic aneurysm revealing metastasis of a soft tissue fibrosarcoma: a case report and review of the literature
por: Delerce, Clotilde, et al.
Publicado: (2018)