Cargando…

A Practical Guide to Design and Assess a Phylogenomic Study

Over the last decade, molecular systematics has undergone a change of paradigm as high-throughput sequencing now makes it possible to reconstruct evolutionary relationships using genome-scale datasets. The advent of “big data” molecular phylogenetics provided a battery of new tools for biologists bu...

Descripción completa

Detalles Bibliográficos
Autor principal: Lozano-Fernandez, Jesus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452790/
https://www.ncbi.nlm.nih.gov/pubmed/35946263
http://dx.doi.org/10.1093/gbe/evac129
_version_ 1784784990913953792
author Lozano-Fernandez, Jesus
author_facet Lozano-Fernandez, Jesus
author_sort Lozano-Fernandez, Jesus
collection PubMed
description Over the last decade, molecular systematics has undergone a change of paradigm as high-throughput sequencing now makes it possible to reconstruct evolutionary relationships using genome-scale datasets. The advent of “big data” molecular phylogenetics provided a battery of new tools for biologists but simultaneously brought new methodological challenges. The increase in analytical complexity comes at the price of highly specific training in computational biology and molecular phylogenetics, resulting very often in a polarized accumulation of knowledge (technical on one side and biological on the other). Interpreting the robustness of genome-scale phylogenetic studies is not straightforward, particularly as new methodological developments have consistently shown that the general belief of “more genes, more robustness” often does not apply, and because there is a range of systematic errors that plague phylogenomic investigations. This is particularly problematic because phylogenomic studies are highly heterogeneous in their methodology, and best practices are often not clearly defined. The main aim of this article is to present what I consider as the ten most important points to take into consideration when planning a well-thought-out phylogenomic study and while evaluating the quality of published papers. The goal is to provide a practical step-by-step guide that can be easily followed by nonexperts and phylogenomic novices in order to assess the technical robustness of phylogenomic studies or improve the experimental design of a project.
format Online
Article
Text
id pubmed-9452790
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-94527902022-09-08 A Practical Guide to Design and Assess a Phylogenomic Study Lozano-Fernandez, Jesus Genome Biol Evol Perspectives Over the last decade, molecular systematics has undergone a change of paradigm as high-throughput sequencing now makes it possible to reconstruct evolutionary relationships using genome-scale datasets. The advent of “big data” molecular phylogenetics provided a battery of new tools for biologists but simultaneously brought new methodological challenges. The increase in analytical complexity comes at the price of highly specific training in computational biology and molecular phylogenetics, resulting very often in a polarized accumulation of knowledge (technical on one side and biological on the other). Interpreting the robustness of genome-scale phylogenetic studies is not straightforward, particularly as new methodological developments have consistently shown that the general belief of “more genes, more robustness” often does not apply, and because there is a range of systematic errors that plague phylogenomic investigations. This is particularly problematic because phylogenomic studies are highly heterogeneous in their methodology, and best practices are often not clearly defined. The main aim of this article is to present what I consider as the ten most important points to take into consideration when planning a well-thought-out phylogenomic study and while evaluating the quality of published papers. The goal is to provide a practical step-by-step guide that can be easily followed by nonexperts and phylogenomic novices in order to assess the technical robustness of phylogenomic studies or improve the experimental design of a project. Oxford University Press 2022-08-10 /pmc/articles/PMC9452790/ /pubmed/35946263 http://dx.doi.org/10.1093/gbe/evac129 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Perspectives
Lozano-Fernandez, Jesus
A Practical Guide to Design and Assess a Phylogenomic Study
title A Practical Guide to Design and Assess a Phylogenomic Study
title_full A Practical Guide to Design and Assess a Phylogenomic Study
title_fullStr A Practical Guide to Design and Assess a Phylogenomic Study
title_full_unstemmed A Practical Guide to Design and Assess a Phylogenomic Study
title_short A Practical Guide to Design and Assess a Phylogenomic Study
title_sort practical guide to design and assess a phylogenomic study
topic Perspectives
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452790/
https://www.ncbi.nlm.nih.gov/pubmed/35946263
http://dx.doi.org/10.1093/gbe/evac129
work_keys_str_mv AT lozanofernandezjesus apracticalguidetodesignandassessaphylogenomicstudy
AT lozanofernandezjesus practicalguidetodesignandassessaphylogenomicstudy