Cargando…
A Novel Method for COVID-19 Detection Based on DCNNs and Hierarchical Structure
The worldwide outbreak of the new coronavirus disease (COVID-19) has been declared a pandemic by the World Health Organization (WHO). It has a devastating impact on daily life, public health, and global economy. Due to the highly infectiousness, it is urgent to early screening of suspected cases qui...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453086/ https://www.ncbi.nlm.nih.gov/pubmed/36092785 http://dx.doi.org/10.1155/2022/2484435 |
Sumario: | The worldwide outbreak of the new coronavirus disease (COVID-19) has been declared a pandemic by the World Health Organization (WHO). It has a devastating impact on daily life, public health, and global economy. Due to the highly infectiousness, it is urgent to early screening of suspected cases quickly and accurately. Chest X-ray medical image, as a diagnostic basis for COVID-19, arouses attention from medical engineering. However, due to small lesion difference and lack of training data, the accuracy of detection model is insufficient. In this work, a transfer learning strategy is introduced to hierarchical structure to enhance high-level features of deep convolutional neural networks. The proposed framework consisting of asymmetric pretrained DCNNs with attention networks integrates various information into a wider architecture to learn more discriminative and complementary features. Furthermore, a novel cross-entropy loss function with a penalty term weakens misclassification. Extensive experiments are implemented on the COVID-19 dataset. Compared with the state-of-the-arts, the effectiveness and high performance of the proposed method are demonstrated. |
---|