Cargando…
Solving the spike feature information vanishing problem in spiking deep Q network with potential based normalization
Brain-inspired spiking neural networks (SNNs) are successfully applied to many pattern recognition domains. The SNNs-based deep structure has achieved considerable results in perceptual tasks, such as image classification and target detection. However, applying deep SNNs in reinforcement learning (R...
Autores principales: | Sun, Yinqian, Zeng, Yi, Li, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453154/ https://www.ncbi.nlm.nih.gov/pubmed/36090282 http://dx.doi.org/10.3389/fnins.2022.953368 |
Ejemplares similares
-
Solving Constraint Satisfaction Problems with Networks of Spiking Neurons
por: Jonke, Zeno, et al.
Publicado: (2016) -
Using Stochastic Spiking Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems
por: Fonseca Guerra, Gabriel A., et al.
Publicado: (2017) -
Back-Propagation Learning in Deep Spike-By-Spike Networks
por: Rotermund, David, et al.
Publicado: (2019) -
Quantum superposition inspired spiking neural network
por: Sun, Yinqian, et al.
Publicado: (2021) -
Evolutionary Spiking Neural Networks for Solving Supervised Classification Problems
por: López-Vázquez, G., et al.
Publicado: (2019)