Cargando…
Moving the field forward: detection of epileptiform abnormalities on scalp electroencephalography using deep learning—clinical application perspectives
The application of deep learning approaches for the detection of interictal epileptiform discharges is a nascent field, with most studies published in the past 5 years. Although many recent models have been published demonstrating promising results, deficiencies in descriptions of data sets, unstand...
Autores principales: | Janmohamed, Mubeen, Nhu, Duong, Kuhlmann, Levin, Gilligan, Amanda, Tan, Chang Wei, Perucca, Piero, O’Brien, Terence J, Kwan, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453433/ https://www.ncbi.nlm.nih.gov/pubmed/36092304 http://dx.doi.org/10.1093/braincomms/fcac218 |
Ejemplares similares
-
Atypical Interictal Epileptiform Discharges in Electroencephalography
por: Janati, A. Bruce, et al.
Publicado: (2018) -
Latencies to the first interictal epileptiform discharges recorded by the electroencephalography in different epileptic patients
por: Liu, Chenyu, et al.
Publicado: (2023) -
Zero-crossing patterns reveal subtle epileptiform discharges in the scalp EEG
por: Pyrzowski, Jan, et al.
Publicado: (2021) -
Correlates of spreading depolarization in human scalp electroencephalography
por: Drenckhahn, Christoph, et al.
Publicado: (2012) -
Sleep and respiratory abnormalities in adults with developmental and epileptic encephalopathies using polysomnography and video‐EEG monitoring
por: Sivathamboo, Shobi, et al.
Publicado: (2023)