Cargando…
Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images
PURPOSE: The novel coronavirus COVID-19, which spread globally in late December 2019, is a global health crisis. Chest computed tomography (CT) has played a pivotal role in providing useful information for clinicians to detect COVID-19. However, segmenting COVID-19-infected regions from chest CT res...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453472/ https://www.ncbi.nlm.nih.gov/pubmed/36091652 http://dx.doi.org/10.5114/pjr.2022.119027 |
_version_ | 1784785149399924736 |
---|---|
author | Salehi, Mohammad Ardekani, Mahdieh Afkhami Taramsari, Alireza Bashari Ghaffari, Hamed Haghparast, Mohammad |
author_facet | Salehi, Mohammad Ardekani, Mahdieh Afkhami Taramsari, Alireza Bashari Ghaffari, Hamed Haghparast, Mohammad |
author_sort | Salehi, Mohammad |
collection | PubMed |
description | PURPOSE: The novel coronavirus COVID-19, which spread globally in late December 2019, is a global health crisis. Chest computed tomography (CT) has played a pivotal role in providing useful information for clinicians to detect COVID-19. However, segmenting COVID-19-infected regions from chest CT results is challenging. Therefore, it is desirable to develop an efficient tool for automated segmentation of COVID-19 lesions using chest CT. Hence, we aimed to propose 2D deep-learning algorithms to automatically segment COVID-19-infected regions from chest CT slices and evaluate their performance. MATERIAL AND METHODS: Herein, 3 known deep learning networks: U-Net, U-Net++, and Res-Unet, were trained from scratch for automated segmenting of COVID-19 lesions using chest CT images. The dataset consists of 20 labelled COVID-19 chest CT volumes. A total of 2112 images were used. The dataset was split into 80% for training and validation and 20% for testing the proposed models. Segmentation performance was assessed using Dice similarity coefficient, average symmetric surface distance (ASSD), mean absolute error (MAE), sensitivity, specificity, and precision. RESULTS: All proposed models achieved good performance for COVID-19 lesion segmentation. Compared with Res-Unet, the U-Net and U-Net++ models provided better results, with a mean Dice value of 85.0%. Compared with all models, U-Net gained the highest segmentation performance, with 86.0% sensitivity and 2.22 mm ASSD. The U-Net model obtained 1%, 2%, and 0.66 mm improvement over the Res-Unet model in the Dice, sensitivity, and ASSD, respectively. Compared with Res-Unet, U-Net++ achieved 1%, 2%, 0.1 mm, and 0.23 mm improvement in the Dice, sensitivity, ASSD, and MAE, respectively. CONCLUSIONS: Our data indicated that the proposed models achieve an average Dice value greater than 84.0%. Two-dimensional deep learning models were able to accurately segment COVID-19 lesions from chest CT images, assisting the radiologists in faster screening and quantification of the lesion regions for further treatment. Nevertheless, further studies will be required to evaluate the clinical performance and robustness of the proposed models for COVID-19 semantic segmentation. |
format | Online Article Text |
id | pubmed-9453472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Termedia Publishing House |
record_format | MEDLINE/PubMed |
spelling | pubmed-94534722022-09-10 Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images Salehi, Mohammad Ardekani, Mahdieh Afkhami Taramsari, Alireza Bashari Ghaffari, Hamed Haghparast, Mohammad Pol J Radiol Original Paper PURPOSE: The novel coronavirus COVID-19, which spread globally in late December 2019, is a global health crisis. Chest computed tomography (CT) has played a pivotal role in providing useful information for clinicians to detect COVID-19. However, segmenting COVID-19-infected regions from chest CT results is challenging. Therefore, it is desirable to develop an efficient tool for automated segmentation of COVID-19 lesions using chest CT. Hence, we aimed to propose 2D deep-learning algorithms to automatically segment COVID-19-infected regions from chest CT slices and evaluate their performance. MATERIAL AND METHODS: Herein, 3 known deep learning networks: U-Net, U-Net++, and Res-Unet, were trained from scratch for automated segmenting of COVID-19 lesions using chest CT images. The dataset consists of 20 labelled COVID-19 chest CT volumes. A total of 2112 images were used. The dataset was split into 80% for training and validation and 20% for testing the proposed models. Segmentation performance was assessed using Dice similarity coefficient, average symmetric surface distance (ASSD), mean absolute error (MAE), sensitivity, specificity, and precision. RESULTS: All proposed models achieved good performance for COVID-19 lesion segmentation. Compared with Res-Unet, the U-Net and U-Net++ models provided better results, with a mean Dice value of 85.0%. Compared with all models, U-Net gained the highest segmentation performance, with 86.0% sensitivity and 2.22 mm ASSD. The U-Net model obtained 1%, 2%, and 0.66 mm improvement over the Res-Unet model in the Dice, sensitivity, and ASSD, respectively. Compared with Res-Unet, U-Net++ achieved 1%, 2%, 0.1 mm, and 0.23 mm improvement in the Dice, sensitivity, ASSD, and MAE, respectively. CONCLUSIONS: Our data indicated that the proposed models achieve an average Dice value greater than 84.0%. Two-dimensional deep learning models were able to accurately segment COVID-19 lesions from chest CT images, assisting the radiologists in faster screening and quantification of the lesion regions for further treatment. Nevertheless, further studies will be required to evaluate the clinical performance and robustness of the proposed models for COVID-19 semantic segmentation. Termedia Publishing House 2022-08-26 /pmc/articles/PMC9453472/ /pubmed/36091652 http://dx.doi.org/10.5114/pjr.2022.119027 Text en © Pol J Radiol 2022 https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0). License (https://creativecommons.org/licenses/by-nc-nd/4.0/) |
spellingShingle | Original Paper Salehi, Mohammad Ardekani, Mahdieh Afkhami Taramsari, Alireza Bashari Ghaffari, Hamed Haghparast, Mohammad Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images |
title | Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images |
title_full | Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images |
title_fullStr | Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images |
title_full_unstemmed | Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images |
title_short | Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images |
title_sort | automated deep learning-based segmentation of covid-19 lesions from chest computed tomography images |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453472/ https://www.ncbi.nlm.nih.gov/pubmed/36091652 http://dx.doi.org/10.5114/pjr.2022.119027 |
work_keys_str_mv | AT salehimohammad automateddeeplearningbasedsegmentationofcovid19lesionsfromchestcomputedtomographyimages AT ardekanimahdiehafkhami automateddeeplearningbasedsegmentationofcovid19lesionsfromchestcomputedtomographyimages AT taramsarialirezabashari automateddeeplearningbasedsegmentationofcovid19lesionsfromchestcomputedtomographyimages AT ghaffarihamed automateddeeplearningbasedsegmentationofcovid19lesionsfromchestcomputedtomographyimages AT haghparastmohammad automateddeeplearningbasedsegmentationofcovid19lesionsfromchestcomputedtomographyimages |