Cargando…
Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images
PURPOSE: The novel coronavirus COVID-19, which spread globally in late December 2019, is a global health crisis. Chest computed tomography (CT) has played a pivotal role in providing useful information for clinicians to detect COVID-19. However, segmenting COVID-19-infected regions from chest CT res...
Autores principales: | Salehi, Mohammad, Ardekani, Mahdieh Afkhami, Taramsari, Alireza Bashari, Ghaffari, Hamed, Haghparast, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453472/ https://www.ncbi.nlm.nih.gov/pubmed/36091652 http://dx.doi.org/10.5114/pjr.2022.119027 |
Ejemplares similares
-
Assessment of background radiation levels in the southeast of Iran
por: Haghparast, Mohammad, et al.
Publicado: (2020) -
Application of rectal retractor for postprostatectomy salvage radiotherapy of prostate cancer: A case report and literature review
por: Ghaffari, Hamed, et al.
Publicado: (2019) -
A historical literature review on the role of posterior axillary boost field in the axillary lymph node coverage and development of lymphedema following regional nodal irradiation in breast cancer
por: Ardekani, Mahdieh Afkhami, et al.
Publicado: (2021) -
Deep learning-based automatic detection of tuberculosis disease in chest X-ray images
por: Showkatian, Eman, et al.
Publicado: (2022) -
COLI‐Net: Deep learning‐assisted fully automated COVID‐19 lung and infection pneumonia lesion detection and segmentation from chest computed tomography images
por: Shiri, Isaac, et al.
Publicado: (2021)