Cargando…
Transcranial current stimulation in epilepsy: A systematic review of the fundamental and clinical aspects
PURPOSE: Transcranial electrical current stimulation (tES or tCS, as it is sometimes referred to) has been proposed as non-invasive therapy for pharmacoresistant epilepsy. This technique, which includes direct current (tDCS) and alternating current (tACS) stimulation involves the application of weak...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453675/ https://www.ncbi.nlm.nih.gov/pubmed/36090277 http://dx.doi.org/10.3389/fnins.2022.909421 |
_version_ | 1784785191154221056 |
---|---|
author | Simula, Sara Daoud, Maëva Ruffini, Giulio Biagi, Maria Chiara Bénar, Christian-G. Benquet, Pascal Wendling, Fabrice Bartolomei, Fabrice |
author_facet | Simula, Sara Daoud, Maëva Ruffini, Giulio Biagi, Maria Chiara Bénar, Christian-G. Benquet, Pascal Wendling, Fabrice Bartolomei, Fabrice |
author_sort | Simula, Sara |
collection | PubMed |
description | PURPOSE: Transcranial electrical current stimulation (tES or tCS, as it is sometimes referred to) has been proposed as non-invasive therapy for pharmacoresistant epilepsy. This technique, which includes direct current (tDCS) and alternating current (tACS) stimulation involves the application of weak currents across the cortex to change cortical excitability. Although clinical trials have demonstrated the therapeutic efficacy of tES, its specific effects on epileptic brain activity are poorly understood. We sought to summarize the clinical and fundamental effects underlying the application of tES in epilepsy. METHODS: A systematic review was performed in accordance with the PRISMA guidelines. A database search was performed in PUBMED, MEDLINE, Web of Science and Cochrane CENTRAL for articles corresponding to the keywords “epilepsy AND (transcranial current stimulation OR transcranial electrical stimulation)”. RESULTS: A total of 56 studies were included in this review. Through these records, we show that tDCS and tACS epileptic patients are safe and clinically relevant techniques for epilepsy. Recent articles reported changes of functional connectivity in epileptic patients after tDCS. We argue that tDCS may act by affecting brain networks, rather than simply modifying local activity in the targeted area. To explain the mechanisms of tES, various cellular effects have been identified. Among them, reduced cell loss, mossy fiber sprouting, and hippocampal BDNF protein levels. Brain modeling and human studies highlight the influence of individual brain anatomy and physiology on the electric field distribution. Computational models may optimize the stimulation parameters and bring new therapeutic perspectives. CONCLUSION: Both tDCS and tACS are promising techniques for epilepsy patients. Although the clinical effects of tDCS have been repeatedly assessed, only one clinical trial has involved a consistent number of epileptic patients and little knowledge is present about the clinical outcome of tACS. To fill this gap, multicenter studies on tES in epileptic patients are needed involving novel methods such as personalized stimulation protocols based on computational modeling. Furthermore, there is a need for more in vivo studies replicating the tES parameters applied in patients. Finally, there is a lack of clinical studies investigating changes in intracranial epileptiform discharges during tES application, which could clarify the nature of tES-related local and network dynamics in epilepsy. |
format | Online Article Text |
id | pubmed-9453675 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94536752022-09-09 Transcranial current stimulation in epilepsy: A systematic review of the fundamental and clinical aspects Simula, Sara Daoud, Maëva Ruffini, Giulio Biagi, Maria Chiara Bénar, Christian-G. Benquet, Pascal Wendling, Fabrice Bartolomei, Fabrice Front Neurosci Neuroscience PURPOSE: Transcranial electrical current stimulation (tES or tCS, as it is sometimes referred to) has been proposed as non-invasive therapy for pharmacoresistant epilepsy. This technique, which includes direct current (tDCS) and alternating current (tACS) stimulation involves the application of weak currents across the cortex to change cortical excitability. Although clinical trials have demonstrated the therapeutic efficacy of tES, its specific effects on epileptic brain activity are poorly understood. We sought to summarize the clinical and fundamental effects underlying the application of tES in epilepsy. METHODS: A systematic review was performed in accordance with the PRISMA guidelines. A database search was performed in PUBMED, MEDLINE, Web of Science and Cochrane CENTRAL for articles corresponding to the keywords “epilepsy AND (transcranial current stimulation OR transcranial electrical stimulation)”. RESULTS: A total of 56 studies were included in this review. Through these records, we show that tDCS and tACS epileptic patients are safe and clinically relevant techniques for epilepsy. Recent articles reported changes of functional connectivity in epileptic patients after tDCS. We argue that tDCS may act by affecting brain networks, rather than simply modifying local activity in the targeted area. To explain the mechanisms of tES, various cellular effects have been identified. Among them, reduced cell loss, mossy fiber sprouting, and hippocampal BDNF protein levels. Brain modeling and human studies highlight the influence of individual brain anatomy and physiology on the electric field distribution. Computational models may optimize the stimulation parameters and bring new therapeutic perspectives. CONCLUSION: Both tDCS and tACS are promising techniques for epilepsy patients. Although the clinical effects of tDCS have been repeatedly assessed, only one clinical trial has involved a consistent number of epileptic patients and little knowledge is present about the clinical outcome of tACS. To fill this gap, multicenter studies on tES in epileptic patients are needed involving novel methods such as personalized stimulation protocols based on computational modeling. Furthermore, there is a need for more in vivo studies replicating the tES parameters applied in patients. Finally, there is a lack of clinical studies investigating changes in intracranial epileptiform discharges during tES application, which could clarify the nature of tES-related local and network dynamics in epilepsy. Frontiers Media S.A. 2022-08-25 /pmc/articles/PMC9453675/ /pubmed/36090277 http://dx.doi.org/10.3389/fnins.2022.909421 Text en Copyright © 2022 Simula, Daoud, Ruffini, Biagi, Bénar, Benquet, Wendling and Bartolomei. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Simula, Sara Daoud, Maëva Ruffini, Giulio Biagi, Maria Chiara Bénar, Christian-G. Benquet, Pascal Wendling, Fabrice Bartolomei, Fabrice Transcranial current stimulation in epilepsy: A systematic review of the fundamental and clinical aspects |
title | Transcranial current stimulation in epilepsy: A systematic review of the fundamental and clinical aspects |
title_full | Transcranial current stimulation in epilepsy: A systematic review of the fundamental and clinical aspects |
title_fullStr | Transcranial current stimulation in epilepsy: A systematic review of the fundamental and clinical aspects |
title_full_unstemmed | Transcranial current stimulation in epilepsy: A systematic review of the fundamental and clinical aspects |
title_short | Transcranial current stimulation in epilepsy: A systematic review of the fundamental and clinical aspects |
title_sort | transcranial current stimulation in epilepsy: a systematic review of the fundamental and clinical aspects |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453675/ https://www.ncbi.nlm.nih.gov/pubmed/36090277 http://dx.doi.org/10.3389/fnins.2022.909421 |
work_keys_str_mv | AT simulasara transcranialcurrentstimulationinepilepsyasystematicreviewofthefundamentalandclinicalaspects AT daoudmaeva transcranialcurrentstimulationinepilepsyasystematicreviewofthefundamentalandclinicalaspects AT ruffinigiulio transcranialcurrentstimulationinepilepsyasystematicreviewofthefundamentalandclinicalaspects AT biagimariachiara transcranialcurrentstimulationinepilepsyasystematicreviewofthefundamentalandclinicalaspects AT benarchristiang transcranialcurrentstimulationinepilepsyasystematicreviewofthefundamentalandclinicalaspects AT benquetpascal transcranialcurrentstimulationinepilepsyasystematicreviewofthefundamentalandclinicalaspects AT wendlingfabrice transcranialcurrentstimulationinepilepsyasystematicreviewofthefundamentalandclinicalaspects AT bartolomeifabrice transcranialcurrentstimulationinepilepsyasystematicreviewofthefundamentalandclinicalaspects |